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Abstract. We develop a new way of writing the LaHamiltonian in Lie-algebraic form. This
yields, in a natural way, an explicit formula for both the Leapolynomials and the classical non-
meromorphic Lara functions in terms of Chebyshev polynomials and of a certain family of weakly
orthogonal polynomials.

1. Introduction

The Lané equation,

Y'(x)+[E—me+1)stx]y(x)=0 (1.1)
wherel is a real parametg¢rand

snx = sn(x|m)

is the usual Jacobian elliptic function of modulasoccupies a central position in the theory

of differential equations with periodic coefficients. The study of its properties has attracted
the attention of many illustrious mathematicians over the last century; classical references are
[1-4]. Basic properties of the Lagrequation are as follows. First, it arises by separation of
variables in the Laplace equation in ellipsoidal coordinates. Secondly, it possesses two linearly
independent R (k)- or 4K (k)-periodic solutions (for characteristic valuesf if and only

if ¢ is a non-negative integer. Heke= /m and K (k) (denoted byK from now on) is the
complete elliptic integral of the first kind with parameter

/2 dx
K@p:/ EE—
0 V1-k2sir’x
Moreover, if¢ is a non-negative integer there are exaétlyaps in the energy spectrum and
the Z + 1 eigenfunctions associated with the boundaries of the allowed energy bands can be
written as homogeneous polynomials of degéae the elliptic functions sn, cn, dn. These
polynomial solutions are known as thamé polynomials In the third place, foany¢ € R
and characteristic values &fthe Lane equation admits two linearly independent solutions of
period & . These solutions are expressible in closed form if and oMydfN + % and shall
be referred to as theon-meromorphic Latfunctions For both types of solutions, namely
the Lane polynomials for integef and the non-meromorphic Lanfunctions for half-integer

§ On leave of absence from: Depto dsiEa Térica I, Univ. Complutense de Madrid, Spain.
|I Without loss of generality, we can assume that —%.
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¢, the characteristic values @f are the solutions of a certain algebraic equation. We shall use
the term ‘algebraic’ to refer to both types of solutions.

The interest of the Latequation is by no means restricted to its mathematical properties.
In fact, several important physical applications have been proposed recently in the literature.
As first remarked in [5], the Laén potential can be considered as a realistic model of
a one-dimensional crystal. The Lanequation also describes some class of fluctuations
of the sphalerons in the Abelian Higgs model in 1 + 1 dimensions [6]. The quantum
fluctuations of the inflaton field in certain cosmological models are determined by the Lam
equation [7, 8].

The Lan& equation appears in a natural way in several Lie-algebraic approaches to the
Schibdinger equation. Early work in this direction was carried out by Alhassil in [5].
In that paper the Lam equation was obtained by separation of variables in the eigenvalue
equation for a Hamiltonian quadratic in the generatorsi6®) written in conical coordinates.
A different Lie-algebraic representation of the Lamquation was discovered by Turbiner in
[9], where it was shown that for integérthe Lané Hamiltonian belongs to the enveloping
algebra of a Lie algebra of first-order differential operators with a finite-dimensional module of
functions. It follows that a number of eigenvalues and the corresponding eigenfunctions of the
Lamé equation can be determined algebraically, i.e. by diagonalizing the finite-dimensional
matrix representing the action of the Hamiltonian in the module. This class of Hamiltonians—
known in the literature aguasi-exactly solvabl@ES)—have been the subject of considerable
investigation over the last decade; extensive reviews of this field can be found in [10-12].
In particular, it is known that several periodic potentials of physical interest—such as the
Razavy potential [13, 14], or the so-called associated & gotential [4]—possess the QES
propertyt.

In the above-mentioned papers the l&aeaguation was successfully algebraized only for
integer values o, corresponding to the Lagpolynomials. A first indirect algebraization of
the Lane equation for half-integefrwas studied by Ward in [15] in connection with the matrix
Nahm equations. The La@polynomials and the non-meromorphic Larfunctions appear
as solutions of some matrix-valued differential equations related to irreducible representations
of 50(3). The Lan& potential (and some generalizations thereof) was revisited by Ulyanov
and Zaslavskii in [16]. In this paper the Lahlamiltonian was obtained from a non-standard
realization ofsu(2) by first-order differential operators, leading to the algebraic solutions
for integer and half-integer values 6f In [17], Brihaye and Godart introduced yet another
indirect algebraization scheme for half-integer values bésed on a system of two second-
order differential equations.

In this paper we shall present a new direct way to algebraize th& leguation which is
valid for both the integer and half-integer cases. Our approach is based on the classification of
one-dimensional QES potentials by Gatez-Lopezet al[10], and the study of the associated
families of weakly orthogonal polynomials [18]. Our method presents some advantages over
the algebraization considered by Ulyanov and Zaslavskii in [16]. Indeed/tihd 2lgebraic
points of the spectrum (corresponding to the boundaries of the energy bands for {raeger
to eigenfunctions of quasi-momentumy (4K) for half-integer¢) are the roots of a pair of
polynomials of degreesand¢ + 1 for integere, or of a single polynomial of degrefet+ % for
half-integer¢. This compares to the algebraization by Ulyanov and Zaslavskii, for which one
needs to find the roots of a polynomial of degréet2L. In the second place, it leads to new
general expressions for the algebraic solutions of thed_aquation in terms of Chebyshev
polynomials and of a certain family of weakly orthogonal polynomials. It should be emphasized

Tt A notorious exception is the Mathieu potential, which is not QES.
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that in the algebraization schemes mentioned above explicit solutions are presented only for
low (integer or half-integer) values éf

This paper is organized as follows. In section 2, we introduce the basic definitions and
show how the Lar@ potential can be obtained using the classification of @lezzlopez,
Kamran and Olver. The algebraization by Ulyanov and Zaslavskii is briefly discussed in this
setting. In section 3, we recall from [18] the basic steps for the construction of a family of
weakly orthogonal polynomials associated with a QES Hamiltonian. Section 4 is devoted to
the integer case. The results of section 3 are used to obtain an expansion in terms of Chebyshev
polynomials which reveals the structure of the classical &@olynomials. This expansion
is used to compute the Lanpolynomials forr < 4. In the final section we analyse the half-
integer case. We obtain an expansion of the non-meromorphi& lfanttions using again
Chebyshev polynomials and relate our formulae to the classical results of Ince. In particular,
we check Ince’s formulae fdf < g and study in detail the cage= g’

2. Algebraizations of the Lanmeé equation
If n is a non-negative integer, it is a standard fact that the differential operators
J =40, Jo=120, — 3n Jr=7%0.—nz (2.1)

are the basis of a representation of the Lie algelf2 R) in the spaceP, of polynomials

of degree at most in the variablez [19, 20]. As a consequence, any differential operator
‘H which is a polynomial in the operators (2.1) preserves the spagéhe converse is also
true; cf [21, 22]). In particulam + 1 eigenfunctions and eigenvaluesiofcan be computed
algebraically,simply by diagonalizing the finite-dimensional operator obtained by restricting
H to P,. More generally, if we perform the change of variable

7 =1¢(x) (2.2)
and consider the operator
1
Hx)=pu@)-H - — (2.3)
u(z) 2=¢(x)

whereu(z) is a nowhere-vanishing function, théh obviously leaves invariant th@ + 1)-
dimensional vector space

uwP = {u(t@) p(¢(x)) | p € Pa}.

Consequently, we can again computel eigenvalues and eigenfunctionsdin an algebraic
way, by considering its restriction to the finite-dimensional spaeg. We shall say that such
an operato# isquasi-exactly solvablgr, for short, QES) [23]. Of particular physical interest
is the case in which the operathris a polynomial of degree two in the generators (2.1), which
we shall write as

H=— Y cadads— Y cala—c.. (2.4)

a,b=0,%+ a=0,%t

Such an operator can be expressed as

~H=P@)d°+[0@) -3 —D P @)]d+R—1n0'@)+5Hnm— 1P (2) (2.5)
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where (see [20])
P(2) = cre 2*+ 200023 + (24— +coo) 2% + 2c0-2 + e
0(z) = iz’ +coz + e (2.6)
R = %Zn(n +2) coo — %n(n +2)ci_ to,.
Note that, using the Casimir identity
JG =3I+ U_J) = in(n+2)

we can take,_ = 0 without loss of generality. It can be shown [20] thaPifs positive then
it is always possible to transform (at least locally) the operatanto aSchibdinger operator
(or Hamiltonian)

H=-82+V(x) (2.7)

by an appropriate change of variable gaadige transformatio(2.2) and (2.3). More precisely,
the inverse of the change of variable (2.2) is given by

z dy
/zo vV P(y)
while the gauge factor is proportional to
z
= P(z)"* ex [ L) d } 2.9
n(z) = P(z) p 2P0y y (2.9)

The potentialv (x) can be expressed in terms of the coefficients ofduege Hamiltoniar+
as follows:

Vi(x) = L [n(n+2) (PP" = 3P2) +3(n+1)(QP —2PQ) — 307

R
12p

=tkx)
(2.10)

where the prime denotes a derivative with respeet to

All one-dimensional potentials whose Hamiltonian is QES (in the precise sense explained
above) have been completely classified in [10], modulo a constant translation of the space
coordinatex. In particular, the Lard equation (1.1) can be obtained from the third family of
periodic potentials (withv = 1), given by

Csnxcnx+D

dré x

Note that, for later convenience, the above notation is slightly different from that of [10]. The
potential (2.11) is obtained from (2.10) when

V(x) = Asrfx + Bsnxcnx + (2.11)

P(z) = (L+2H)[1+ 1 —m)z?]. (2.12)

Indeed, from (2.8) it follows that, in this case,

Shx
== 213
¢ Ccnx ( )
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Substituting (2.12) into (2.10) and using (2.13) we find the following explicit formula for the
coefficients in equation (2.11):

A= %mn(n+2) — C—zo(n+1)+$[cg— (C+—C_)2] (2.14)
1

B = %(CJ, —c_)[m(n+1) —co] (2.15)

C = %[64. +(m — l)c_][m(n +1) +co] (2.16)

1 Co 1 2 2
D=Z(m—Dn(n+d+ =D+ D+ [on = D+ (co+ m — D )?].
(2.17)
Note that we have taken

Cx

= 2 [(Zm D +1—m) (CS +2cic ) — cf] + %(l’l +1) — %n(n +2) (2.18)

in order to eliminate a constant term in the potential. Comparing (1.1) with (2.11) we obtain
the system

A=mel+1) B=C=D=0

which has the following four sets of solutions:

n==4¢ ct=c_=0 co=-—-mkt (2.19)
n=£-1 cv=c_=0 co=-m(+1) (2.20)
n=1~0-—3 cv=c_=iv1-m co=—m(t+3) (2.21)
n=1=0—3 cv=c_=—iv/1—m co=—m(L+3). (2.22)

The first two solutions are valid wheris a non-negative integef ¢ 1 for the second solution

to exist), while the last two solutions hold whéis a positive half-integer. From the previous
general discussion it follows that whéns a non-negative integer or a positive half-integer a
certain number of eigenfunctions and eigenvalues of thed ldamiltonian can be computed in

a purely algebraic fashion, by solving the eigenvalue problem of the restriction of the operator
H corresponding to the Hamiltonian (1.1) to the finite-dimensional spaceheren is given

by (2.19)-(2.22). An explicit expression for the gauge Hamiltorfiaoan be easily found

from equations (2.4), (2.6), (2.12) and (2.19)—(2.22), namely

A=—m)J2+QR—m)JE+J> —mlJy+c,

AL=—m)J2+@2—=m)JZ+J? —m+1)Jy+c,
~H = . R ° ) (2.23)
A=—m)Ji+@2—-—m)Jg+J2+iV1—mJs+J)—m(€+3) Jo+c,

A=—m)JZ+Q2—m)JE+J? —iV1—mUs+J)—m(€+3) Jo+cs

Each of the four cases in this formula corresponds to the respective solution (2.19)—(2.22),
and it is understood that in each case the operatofs = 0, +) and the constant, must

be computed using the value offor the corresponding solution (2.19)—(2.22). Note that
equation (2.23) is essentially equivalent to equations (7)—(9) of [9]. The latter equations,
however, appear more complicated than (2.23), due to the fact that [9] uses the Weierstrassian
form of Lamé’s equation.
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Before studying in more detail the four algebraizations (2.19)—(2.22) of thélegyumation
obtained in this section, it is worth pointing out that there are other alternative algebraizations
within the general formalism described above. Indeed, from the identity

dré x 1 m
1-m 1-m 1-m

and the fact that the potentials in [10] are classified up to constant translations, it can be shown
that the Larg potential is a member of the first two families of periodic QES potentials listed

in the latter reference. For the same reason, we could also have derived teetaation by
equating to zero the coefficients B andC in equation (2.11). It can be shown that all of
these ways of algebraizing the Laraquation are essentially equivalent to that adopted in this
paper. Finally, there are other less obvious algebraizations of thé eaumtion such as, for
instance, the non-standard one discussed in [16], which falls within our framework by taking

st x

dn?(x +K) =

H=L—m)Jg+3m(J+J )2,
From equation (2.6) it follows that in this case
P(z) = —[mz*+ (1= 3m) 2* + 3m] 0@ =0  R=%@m—Dnn+2.
It is straightforward to show that tr@mplexchange of variable

z=Cnx +isnx

(cf equation (2.8)) and the gauge transformation defined by (2.3) and (2.9Hniato the
Schiddinger operator (2.7) with potential

St x
Vix)=—-m (1 —m) %n (%n + 1) ax
= 2mn (3n + 1) [srP(x + K) — 1] (2.24)

which is essentially the Laepotential with¢ = n/2. SinceP(z) is negative everywhere and

all its roots are complex, it can be mapped to a negative multiple of the polynomial (2.12) by a
projective change of variable and gauge transformation. As explained in [10], this means that
the potential (2.24) can be obtained by a suitable choice of parameters in the third family of
QES periodic potentials (with pure imaginary frequerdy).

3. QES potentials and weakly orthogonal polynomials

We summarize in this section the main ideas of the procedure developed in [18] to construct
a family of weakly orthogonal polynomials associated with a QES potential. This method
will be used in the following to analyse the structure of the algebraic solutions of thé Lam
equation.

The original idea of the method was introduced by Bender and Dunne in [24], who showed
that a certain expansion of the algebraic eigenfunctions of a QES sextic potential defines a
family of weakly orthogonal polynomials. It was later proved in [18] that (almost) any QES
potential can be associated with a family of weakly orthogonal polynomials via a suitable
expansion of the corresponding algebraic eigenfunctions. In order to find the appropriate
expansion, one first writes the solutions of the gauged eigenvalue equation

Hxe = Exe
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as a formal power series in the variable
00 j
@@=y P_,-(E)j.—,.
j=0 '
The coefficientsP; (E) are easily found to satisfy the five-term recursion relation

—c__Pjir = [(2j —n+1co_ + c,] P+ [E +c, + co(j — %n) + coo(j — %n)z] P;

+j(j—1-m[(2j —n—Dewotc:] Pja

tj(=DG—-1-n)( —2-n)cwsPj Jj=0. (3.1)
If c._ = ¢4+ = 0 and the coefficient aP;., does not vanish for any > 0, choosingP_, = 0,
Py = 1, each coefficienP; with j > 1 is then a polynomial irE of the jth degree. The
conditionc__ = c++ = 0 means that the polynomi&l(z) in (2.6) vanishes at = 0, oo, when

z takes values in the complex projective liG@.
In the second step, one ensures that the conditions= c.. = 0 hold by performing a
suitable complex projective change of variable,
aw +

= a,B,y,6 €C A=ad— By #0 (3.2)
yw+$§

and a gauge transformation with gauge factor
a(z) = (yw +8)". (3.3)
The corresponding eigenfunctions in the variablare thus

otw+,3)'

X = +8)"
fr) = oo+ o) xe (T

The transformed gauge Hamiltonianis still of the form (2.5), with the polynomialg (z),
Q(z) andR replaced by the polynomials

R + )4 +

P(w) = (ywAz ) P(aw +§> = Crpw® + 200w + Coow? + 260w + ¢
yw

A (Yw+8)? raw+py s

0w = Z=5— 0o ) = e rdow + o (3.4)

Ié =R = ﬁn(n + 2)6004‘6*.

In our case, the polynomialP(z) possesses four different complex roots; see
equation (2.12). Ik, andz, denote two such roots, the relevant gauge transformation can
be taken as

z—21
71—
The resulting algebraic eigenfunctions (expressed in the physical coord)raeof the form
3 non PiE) (1) =z

Ve@) = n(E@) (E0) —22)" Y ( oy = ZZ)

=

(3.5)

w =

(3.6)

with ¢(x) and u(z(x)) given by equations (2.13) and (4.1) or (5.1), respectively. The
coefficientsP; (E) in this expansion satisfy a recursion relation of the form (3.1) where the
coefficientscyy, ¢, ¢« (a, b = £, 0) are replaced by, ¢, ¢, with ¢__ = ¢4+ = 0. From
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equations (3.2), (3.4) and (3.5) it follows that the coefficienPpf; in this recursion relation
does not vanish for any > 0 provided

(2j —n+1) P(z1)+20Q(z1) #0 vj=20. (3.7)
If this condition holds, the polynomialB; (E) can be normalized to monic ponnomia‘k(E)
satisfying a recursion relation of the form

ﬁj+1:(E—bj)ﬁj—ajﬁj_]_ ‘]20 (38)

with P_; = 0. The coefficients,.; vanishes, and therefore the s{e;ﬁp}j}() is a family of
weaklyorthogonal polynomials; see [18] for more details. We shall prove that in our case the
coefficientsa; are strictly positive for I< j < n. By lemma 1 (section 1.8) of [4], it follows

that thecritical polynomial P (or P,+1) hasn + 1 different real root¥;, 0 < i < n. Since

the recursion relation (3.8) implies that each of these roots is also a root of the polynomials

P;(Ey with j > n+1,fori = 0,1,...,n the functiony, (x) is a genuine solution of
the Lane equation (1.1) with energf = E;. Thesen + 1 exact solutions can be obtained
algebraically,by computing the polynomialsPy (E), ..., P,(E) fromthe recurrence relation,

and in fact coincide with the + 1 eigenfunctions of the LaenHamiltonianH algebraically
computable by diagonalizing the restrictionféfto P, (or, equivalently, the restriction ¢{
toP,).

4. Case l:£ is a non-negative integer

We shall show in this section that whéis a non-negative integer the algebraic eigenfunctions
of the Lané Hamiltonian are the classical Lapolynomials [4].

From equations (2.9), (2.13) and (2.19), (2.20) we deduce that in this case the gauge factor
verifies

cnf x n==¢

entxdnx n=£¢-1 (4.1)

w(Ex)) = {

where we have dropped some irrelevant numerical factors. From equations (2.3), (2.13) and
(4.1), it follows that wher? is a non-negative integer then the Lamdamiltonian hag + 1
eigenfunctions of the form

Snx

y =cn'xx (=)

cnx
wherey is a polynomial of degree at mo&t Thus we can write

¥ (x) = %(snx, cnx) (4.2)

wherey is a homogeneous bivariate polynomial of degre8imilarly, if £ is strictly positive
then there aré additional eigenfunctions of the LarHamiltonian of the form

¥ (x) = dnx - fj(snx, cnx) (4.3)

where7 is a homogeneous polynomial in two variables of dedreel. Thus, wher? is a
non-negative integer the Lantamiltonian admits 2+ 1 algebraic eigenfunctions of the form
(4.2) and (4.3).

To show that the latter 2+ 1 algebraic eigenfunctions are indeed the classicald.am
polynomials, we need to study equations (4.2) and (4.3) in more detail. Fortunately, this can
be done in a totally systematic way, by applying the procedure described in the previous section
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for associating a weakly orthogonal polynomial family to a one-dimensional QES Hamiltonian.
One can immediately verify that (3.7) is satisfied for both solutions (2.19) and (2.20) simply by
takingzy = —i. If we choosez, = i, from equation (3.6) we obtain the following expression
(up to a constant factor) for thie+ 1 exact eigenfunctions of the L@&namiltonian coming
from the first algebraization (2.19):

Vg (x) = Z (—') P;(E;) (cnx + isnx)‘~/(cnx — isnx)’ 0<i <!t (4.4)
=0 /I
where thel + 1 energiest; satisfy
Ppa(E)) =0 0<i<e. (4.5)

In the same way, the second algebraization (2.20) yieldé ¢igenfunctions

-

{— _1j
Vi (x) =dnx . ( j!)

J

P;(E;)(cnx +isnx) 7/ (cnx —isnx)/ 0<i<e-1

I
o

(4.6)
Where{f’j},;o is the orthogonal polynomial family constructed from the solution (2.20) and
the ¢ energiesk; are given by
Py(E;) =0 0<i<t—1 4.7)

We shall next derive the recurrence relation defining the polynonfiaksnd 15j. As it
was shown in section 3, the latter relation is determined by the coefficients of the auxiliary
polynomials P (w), Q(w) in (3.4) obtained by applying t®(z) and Q(z) the projective

transformation (3.5) with; = —i = —z,, namely
. A-w?  [(z1— 2w
P = P 4,
W) (z1 — 72)? < 1-w ) (4.8)
—_ )2 _
ow =279 (“ Zzw). (4.9)
71— 22 1—w

From equations (2.12) and (4.8) we easily obtain the following formulaforalid for both
algebraizations (2.19) and (2.20):

f’(w) =muw® — 22 — m)w? + mw. (4.10)

Similarly, equations (2.6) and (4.9) imply that the polynomialassociated with the first
algebraization (2.19) is given by

0=1imew?-1 (4.11)
while for the second algebraization (2.20) we obtain

0 =1imE+1) w?-1). (4.12)

Following [18], we define the normalized ponnomiaft;(E) andf’j(E) by

PiE)) ny

—_~
NI

_ P;(E
(2¢ — N {,() 4.13)

[:)j(E) B (20 -2j =D | Py(E).
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The ponnomiaIsﬁj satisfy a recurrence relation of the form (3.8) with, = 0 and
aj=3Im?j2j -1 —-2j+DHE—j+D (4.14)
bj=3Ime@+1)+1i2—m)—2j)> (4.15)

Likewise, the polynomialéj verify the recurrence relation

A

Piy=(E-b)Pj—aPj.y  j>0 (4.16)
wheref’,l = 0 and the coefficientd; andb; are given by

a;=3im?j2j+1)20—2j+1) (£ —)) (4.17)

bj=1ime+D+i@2-m)(-2j-1>% (4.18)

Note that from the normalizatiof, = Py = 1 and equation (4.13) it follows that
ﬁo = Igo =1 (419)

Furthermore, equations (4.14) and (4.17) imply that the coefficensnda; are strictly
positive for 1< j < ¢and 1< j < ¢ — 1, respectively. This guarantees that all the roots of

the critical polynomialsﬁm andP; are real and simple, as we had anticipated in section 3.
Our nexttaskis to simplify equations (4.4) and (4.6) using the properties of the polynomials
P; and P;. We shall start by proving the following useful result:

Proposition 4.1. The algebraic eigenfunctions (4.4) and (4.6) are always either real or purely
imaginary.

Proof. Let us rewrite equations (4.4) and (4.6) in terms of the elliptic amplite@¢ = amx,
defined by

cnx +isnx = &¢®,

We thus obtain the expressions

4
WE,' (x) = Z Dij ei(Z—Zj)w(x) o<ig? (420)
j=0
and
-1 )
Vi () =dnx ) p @AW 0<r<e—1 (4.21)
s=0

where we have set, for convenience,

(_sll)s Py(E,). (4.22)

pij = il P;(E;) Drs =

Let us concentrate, for definiteness, on the eigenfunctions of type (4.20). We rewrite
equation (4.20) in the form

Ve ) = Y [py € 4 p e O (4.23)
0<j<t/2
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where we take; ,» = 0 whent is odd. Taking into account that, by the recurrence relation
(3.8), (4.14) and (4.15), all the coefficienig are real, we conclude from equation (4.23) that

Reyr,(x) = Y (pij + pic-j) COE = 2))p(x) + piy2 (4.24)
0<j<¢t/2
IMye ()= Y (piy — Piej) SINE — 2))p(x). (4.25)
0<j<t/2
Let us now introduce the polynomial family
-1/

in terms of which the coefficients;; are simply expressed by
pij = (E) 0<i,j<t.
Defining two additional families of univariate polynomials(E) andp;(E) by
0;(E) = m;(E) + ¢ ;(E) pj(E) = m;(E) — - ;(E) (4.27)
from equations (4.24) and (4.25) we have
Reyr, =0 << o0j(E)=0 for 0<j <[¢/2]
Imyg =0 <<= p;j(E)=0 for 0<j<¢/2
(where [- ] denotes the integer part). From equations (4.13)—(4.15) and (4.26), it immediately
follows that the polynomials ; (E) satisfy the three-term recurrence relation

2
(J+D@L—-2) —Drjsr = Z(b-i — Bty —Q2j-D( —j+Dmj (4.28)

with the initial conditions
m_1(E)=0 mo(E) =1 (4.29)
where the coefficients; are defined by equation (4.15). It is easy to see that equation (4.27)
implies that the polynomial familie{ajj(E)}j>0 and{,oj(E)}j2O satisfy the same three-term
recurrence relation (4.28) as the farrﬁbyj(E)}j>0. Moreover, from equation (4.5) we obtain
o_1(E;)) = p-1(E;)) =0 0<i<d. (4.30)

From this, and the fact that the coeﬁicie@ﬁg(E,-)}j>0 and{,oj(E,»)}D0 satisfy athreeterm
recursion relation of the type (4.28) (with = E;), we conclude that the vanishing @§(E;)
or of po(E;) automatically implies the vanishing efi(E;) or of p;(E;), respectively, for all
values ofj > 0. Thus we can write

Reyy =0 <= op(E;) =0 Imyz, =0 <= po(E;) = 0. (4.31)

To complete the proof of the proposition, we simply note that equations (4.29) and (4.30) and
the fact that{a,(E,-)}l.>O and {pj(E,-)}j>0 satisfy thesamethree-term recursion relation as

{nj(E)}j>O imply that
oj(E;) = oo(E;) i (E;) j=0
and, in particular,
oo(E;) = 0¢(E;) = oo(E;) me(E;)
&= 00(E) [1 — m(E)] = o0(E:) po(E;) = 0. (4.32)
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The proof for the eigenfunctions of type (4.21) is totally analogous, and will therefore be
omitted. O

Let us order, from now on, thé+ 1 algebraic eigenvalues; of the Lane equation in
increasing order, i.e.

Eo<Ei1<---<E/1<Ey

and similarly for the eigenvalues;. From lemma 1 (section 1.8) of [4] and the positivity of
aj for 1 < j < £ we easily deduce that

sign[(—1)" Py(E)] = (=)’ (4.33)

which implies (by equation (4.26)) that (E;) has the sign of—1)'. Thus for even we have
oo(E;) = 1+m,(E;) > 0 and from (4.32) we conclude thag(E;) = 0. In the same way we
establish thato(E;) = 0 for oddi. From equation (4.31) we obtain

Reypg, ., = Imyyg, = 0. (4.34)

We can therefore write the+ 1 exact eigenfunctions of type (4.4) of the Laequation as the
Jacobi—Fourier series

$2r(¥) = YE, (X) = > 02, COAL — 2/)¢(x) + vz (4.35)
0<j<t/2
1 . )
Goe1(¥) = ZYp,, () = D paver; SINE — 2))p(x) (4.36)
! 0<j<t/2
with
02j =0;(E2) = paj + pare—j P25+1,j = Pj(E2e41) = Pos+1,j — Pos+le—j (4.37)
and
0<r<[3] 0<s < [3-1D]. (4.38)

We can derive in a totally analogous way an equivalent formula fo¥ thigenfunctions of
type (4.23), namely

$or(X) = Y, () =dNx | fp iyt ) G2, COE—2j — Dp(x) (4.39)
0<j<3(-1)
- 1 - . .
Pos1(x) = TWEM(X) =dnx Z P25+1,j SINCE — 2 — D)p(x) (4.40)
0L j<3(¢—1)
where now
O2rj = D2r,j + Pore—j—1 P2s+1,j = D2s+1,j — D2s+10—j—1 (4.41)
and
0<r<[3¢t—1)] 0<s<[3¢] -1 (4.42)

Our next step is to further simplify equations (4.35)—(4.42) for the algebraic eigenfunctions
of the Lane Hamiltonian. To this end, recall that by construction the Chebyshev polynomials
T;andU; (j =0, 1, 2,...) satisfy the identities

cogja) = Tj(cosw) (4.43)
sin(jo) = sina U;_1(cosw) (4.44)
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where the latter equality is formally valid fgr= 0 if we setU_; = 0. It follows that

$or(¥) = Y 02 To-2;(CNX) + oy (4.45)
0<j<t/2
¢o5+1(x) = Snx Z p2s+1,j Ug—2j—1(CNx) (4.46)
0<j<t/2

and, similarly,

$o-(x) =dnx | fp 1oy * Y, G2 Tegja(Cnx) (4.47)
0<j<3(e-1)
Poa(x) =snxdnx Y fouj Urzj-2(Cnx). (4.48)
0< <31

Itis now straightforward to check that equations (4.45)—(4.48) encompass the eight types
of classical Laré polynomials listed in [4]. Indeed, note first of all that the polynomialg)
andU;(t) have the parity of—1)/ under the reflection > —x. Therefore, the formulae

Unj(1) = j=012.... (4.49)

_ Tyt
T2;(1) = A tl(t)

Uzjs(t)
t

define even polynomialdy;(¢) and Uy, (t) of degree 2. If ¢ = 2N (N = 1,2,...),
equations (4.45)—(4.48) yield the following four types of polynomial—in sn, cn, dn—solutions
of the Lan& equation:

N-1
¢2r(x) = pary + ZUZr,j Ton—2j(CNx) = a, (Srf x) (4.50)
=0
N-1 B
$2s+1(x) = SNx CNx Y posss; Uanv—2—2(CNx) = snx cnix fy(srfx)  (4.51)
=0
$2s(x) = cnx dnx Z &2, j Tay_2j_2(cNx) = cnx dnx & (SrF x) (4.52)
=0
Paer1(x) = SNx dnx Y fossa j Uay—zj-2(Cnx) = snx dnx f(siPx) (4.53)
=0
where
0<r<N O0<s<N-1 (4.54)

ande, (1), By (1), @ (t) andpB; (¢) are polynomials of respective degrees
dega, = N degB, = dega, = degf, = N — 1. (4.55)

Similarly, if £ =2N +1 (N = 0,1, 2, ...) the exact solutions of the Larequation (4.45)—
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(4.48) can be written as follows:

N
¢2r(x) = CNx Y 02, j Toy—2;(CNX) = CNx ¥, (SIT x) (4.56)
=0
N
¢2r+1(x) = SNx Zp2r+1,j Uzn—2j(Cnx) = snx 8, (S x) (4.57)
=0
) N-1
¢2r(x) = dnx |:132r,1v + Z O2r,j Ton—2; (Cnx)i| = dnx 7, (SIf x) (4.58)
=0
¢Pos+1(x) = snx cnx dnx Z P2s+1,j Uan—2j—2(CNx) = snx cnx dnx & (srf x) (4.59)
=0

where the range of the indicess is still given by equation (4.54) ang (1), 5 (1), y» (1) and
3, (1) are polynomials with

degy, = degs, = degy, = N degd, = N — 1. (4.60)

4.1. Examples

The explicit expressions for the Lapolynomials in terms of Chebyshev polynomials derived
at the end of the previous section can be used to algorithmically compute tlegdodynomials
and their corresponding energies for low valueg.of

Whent¢ = 1, equations (4.56)—(4.59) fav¥ = 0 immediately yield the following well
known formulae for the La@polynomials of order 1.:

Po(x) o< cnx $1(x) o snx $o oc dnx. (4.61)

The critical polynomialsﬁz andP; are easily computed using the recurrence relations (3.8),
(4.14)—(4.18), with the result

PyE)=E2— (m+2QE+m+1  PyE)=E —m. (4.62)

The energies associated with the eigenfunctions (4.61) are just the roots of each of the latter
polynomials ordered increasingly, namely

Eo=1 Ei=m+1 Eqo=m. (463)

For ¢ = 2 the critical polynomials are

Py(E) = E3 — (5m +8)E2 + 4(m? +8m + A)E — 12m (m + 4) (4.64)
Py(E) = E% — (5m + 2)E + (m + 1)(4m + 1). (4.65)

The energies corresponding to the Llapolynomials of order two are therefore given by

E
O}=2(1+m:}:\/m2—m+l) Ei=4+m (4.66)

E;

Eo=m+1 E;=4m+1. (4.67)
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Note that the factor of 2 in (4.66) is missing in [4], p 205. The lEapolynomials are easily
computed using (4.50)—(4.53) wifti = 1, with the following result:

_1
i¢o}=srﬁx—i<l+mﬂ:\/m2—m+l) (4.68)
3m

—792
1¢1 = snxcnx (4.69)
160 = cnx dnx 141 = snx dnx. (4.70)

Whent¢ = 3 the critical polynomials are given by

Py(E) = [E> — 25+ 2n)E + 33+ 8n) | [E2 — 101 +m)E + 3(3m? + 26m + 3)]  (4.71)

Py(E) = [E — 40m + D] [E? — 22 + 5m)E + 3m(3m +8)] (4.72)

from which the following exact energies are computed:

Eo
e =2m+5F2ym2—m+4 (4.73)

2

E1
= 5(m + 1) F 2V/4m? — Tm + 4 (4.74)

Es3

Eo
Lt =5m+2F2V4m?2 —m+1 (4.75)

E;
Ev=4(m+1). (4.76)

From equations (4.56)—(4.59) wiffi = 1, the corresponding La@rpolynomials are given by

_1

513¢o =cCcnx [Snzx— 1 (m+2:l: \/mz—m+4)i| 4.77)
—202 5m
_1

f¢l = snx [snzx — (2(m +1) + am? — Tm + 4)} (4.78)
—1¢s 5m
—3%0 1

‘11~ =dnx |:snzx——<2m+l:|:\/4m2—m+l)i| (4.79)
1o 5m
%(]31 = snx cnx dnux. (4.80)

The latter formulae for the Laenpolynomials of order three and their corresponding energies
are seen to coincide with those given in [4].

When ¢ is greater than three, it becomes increasingly more difficult to compute the
Lamé polynomials of orde¥ and their corresponding eigenfunctions in closed form. This

is essentially due to the fact that the high degree of the critical golynorﬁ@a@df’m in
general makes it impossible to exactly compute the enetgiesnd E;, which enter in the
definition of the coefficientp;; and p;;. For example, fo€ = 4 the critical polynomialsPs
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and1§4 are given by
P5(E) = [E? — 10E(2 +m) + 64 + 136n + 9m?]

x [E® — 20E%(1 +m) + 16E (4 + 21m + 4m?) — 640n(1 +m)] (4.81)

134(E) = [E? — 10E(1 +m) + 9 + 46m + 9m®| [E* — 10E (1 + 2m) + 9 + 136m + 64m?].
(4.82)

It is not difficult to verify that the roots of the quadratic factor Bf are the energieg; and
E3, so that we have the exact formula

E
! } — 5(m+2) F VAmZ — Om + 9. (4.83)
3

The corresponding Laenpolynomials are easily computed using equation (4.51):

1
_1 1
116¢1 } = Snx Ccnx |:sr'|2x - — (Zm +3++v4m2 — 9m + 9):| (4.84)
m

— 3593

Similarly, the fact thgtf’4 factorizes into two quadratic polynomials allows us to exactly
compute the energids; in this case, obtaining

E
~O} =5m+1) F2Vam2+m+4 (4.85)

E,

E
El } — 52m+1) T 2J/9m2 — 9m + 4. (4.86)

3
By equations (4.52)—(4.53), the corresponding eigenfunctions are given by

_1z
idjo } =cnxdnx [snzx — % <2(m +1) £ VaAm2+m+ 4)] (4.87)

—592
67| _ ndne [ ! (5m+sta/om’—om+4)|. (as8
_1_16(53 = Shx xSx—@(m m2 — 9m ) (4.88)

The remaining Lara polynomials of order four can be expressed using equation (4.50) interms
of the three root&; (i = 0, 2, 4) of the cubic factor ofPs, with the following result:

1—16¢,~ =srfx — ﬁ [16(m + 1) — E;] srf x

1
+ E2 — 20(m + 1)E; + 64m? + 296m + 64]. 4,
5503 LEX = 200m + 1), + 64m? + 296m + 64] (4.89)
For instance, fom = % the rootsEy, E, and E4 can be computed in closed form:
Ep
o= 10F 2V13 E, = 10. (4.90)
4

Substituting into equation (4.89) we obtain the following exact expressions for the
corresponding La#polynomials fomn = %:

1
350
1

TePa

Lo =srfx —2srfx+2. (4.92)

}:srﬁx—g(7iJE)erx+§(4iJT3) (4.91)
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5. Case ll: £ is a positive half-integer

This is the most interesting case, since we shall see that it leads to the non-meromorghic Lam
functions, whose algebraization has proved more difficult than that of th& paignomials.

The gauge factor can be computed from equations (2.9), (2.13) and (2.21), (2.22), with
the result

w(2(x)) = cn' x (cnx £i k" snx)Y2. (5.1)

The upper and lower signs in this formula correspond, respectively, to the solutions (2.21) and
(2.22),

and we are using the customary notation
k= m K =+~1—m. (5.3)

Thus whert is a positive half-integer the La@requation hasi2+2 = 2¢+1 algebraic solutions
of the form

YE(x) =cnx (cnx ik snx)Y2 x* (2:);) (5.4)

wherey * is a polynomial of degree at most

We shall now use the same strategy as in the previous section to simplify the eigenfunctions
(5.4). Itis straightforward to check that in this case only the two radfs’ of the polynomial
P(z) in (2.12) satisfy (3.7). For reasons that shall become clear later, we shall choose

where again the upper sign corresponds to (2.21) and the lower sign to (2.22). Using the same
convention for the eigenfunctiomﬁsé; and the polynomialfji, a straightforward calculation

yields

Ei( x) = Z (_ ) PF(E) (enx ik snx)"/*¥2(cnx ik snx)/. (5.5)

We have dropped an inessential constant factor in the latter formula, and the erﬂi;."?ge'&s
defined by

PE(EF) = 0<i<n. (5.6)

(We shall prove below that the roots Bf;, are indeed real and simple.)
We now compute the polynomia!é}.i, or more precisely the recurrence relation defining

tbem. In principle, we should use the notatiéﬁ(w) and Qi(w) to denote the polynomials
P(w), O(w) in equations (4.8) and (4.9) corresponding to each of the two cases (2.21) and
(2.22). Remarkably, a direct calculation shows that this is actually unnecessary, since

Prw)y=P (w)=P(w) = — [mu)3 +2(2 — m)w? +mw] (5.7)

0t (w) = 0~ (w) = Q(w) = 3m(n +2Qw?+ (2 — mw — imn. (5.8)
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This implies that the recurrence relations determining the two sets of orthogonal polynomials
{Pi(E)} are in fact the samet. Since we have normalized both sets sgifiat = 1,
it follows that both polynomial families are identical, namely

P;(E) = P; (E) = P;(E) j=012.... (5.9)
In particular, the above equality fgr= n + 1 and equation (5.6) show that
El =E  =E; 0<i<n. (5.10)

Moreover, to each of theset 1 energies correspond two algebraic eigenfunctions of the form
(5.5), which on account of (5.9) can be written as

1
Vi = Z - i Y ~— - Pj(E;) (cnx £ ik snx)"/*2(cnx Fik'snx)/.  (5.11)
=

From equations (5.7) and (5.8) we see that the coefficients of the polynofhjals and
Q(w) are all real. This implies, cf section 3, that the coefficients of the recurrence relation
determining the polynomial®;(E) are also real. Sinc&(E) = 1, it follows thatP;(E)

is a polynomial with real coefficients, for ajl = 0, 1,.... From equation (5.11) and the
positivity of the coefficient:; for 1 < j < n (cf equation (5.14) below), it follows that all the
energiesE; (0 < i < n) are real and simple and therefore

vp =v;  0<i<n
where the overbar denotes complex conjugation. If we set

Yi(x) = Yz (x) 0<i<n
then for each rook; of P,.; the Lané equation hatwo algebraiaeal-valued solutions given
by

¢l (x) =Reyi(x)  ¢F(x) = Imy;(x). (5.12)
The recurrence relation satisfied by the polynomiléE) can be easily written down from

(5.7) and (5.8) using the procedure presented in section 3. Indeed, the normalized polynomials
P;(E) defined by

P;(E) 2\% P.(E)
T <%> @) (®.13)
satisfy a three-term recurrence relation of the form (3.8), with
aj; = 4m 2j2j —D@2n—2j+3n—j+1) (5.14)
bj:Z(2n+1)(m+2n+1)—(2—m)j(2n—2j+1). (5.15)

We are ready to show that, whéris a half-integer, the 2+ 1 algebraic solutions of the
Lamé equation of the form (5.11) and (5.12) obtained in the previous section are precisely the
non-meromorphic Lagfunctions.

To this end, we need to simplify equation (5.11). In the first place, since

lenx £k snx| = dnx (5.16)

t From equation (2.18) we havé = ¢, and from the fact thak is invariant under projective transformations [20]
and equations (2.6) and (5.7) we obtain

P +
¢, = 12n(n +2) (coo - COO) =c,.
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(recall that drx is positive for all real), we can write

cnx £ik snx = dnx e?® (5.17)
so that
Chnx Snx
cosh(x) = — sinf(x) = k'——. 5.18
(x) dnx (x) dnx ( )

Secondly, we have

1
(cnx +ik'snx)¥? = :I:—2 <V dnx +cnx +ie(x)v/dnx — Cnx) (5.19)

&l

where we have set
€(x) = sign(snx). (5.20)

Note that the functions/dnx + cnx ande(x) ~/dnx — chx are C* on the whole real line
except at the points = 2(2r + 1) K. We shall also find useful in the following the identities

dnx £ cn
vdnx £ cnx = e(x) —; o il vdnx Fcnx. (5.21)
X

From (5.17) it follows that

> pij (enx +ik"snx)" 7/ (chx —ik'snx)/ =dn' x ) p;; €200 (5.22)

j=0 j=0

where the coefficients;; are again defined by equation (4.22). The sum in the latter equation
is of the same type as (4.20) and therefore can be expressed as follows:

n

Z Dij g =200 — Dinj2t Z 0ij Th2j (COSG(X))

j=0 0<j<n/2

+isind(x) Z Pij Un—2j-1(cosf (x))
0<j<n/2

= Dinj2+ Z 0;j Ty—2j(cdx) +ik'sdx Z pij Up—2j—1(cdx)

0<j<n/2 0<j<n/2
(5.23)
where we have used the customary abbreviations
cnx snx
cdx = dnx sdx = dne
and we have again set
0ij = Pij ¥ Din—j Pij = Dij — Pin—j- (5.24)

From equations (5.19) and (5.21) (dropping the constant faeigk/2) we easily obtain

qbil(x) =+/dnx+cnx dn" x |:p,~,n/2 + Z 0;j T,—2;(cdx)

0<j<n/2

+Hedx—1) Y oy U,,_Z.,-_l(cdx)j|. (5.25)

0<j<n/2
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An analogous calculation leads to the following expression for the second sajdtion

qbl-z(x) =e(x)+/dnx —cnx dn" x |:p,~,n/2 + Z o T,—2;(cdx)

0<j<n/2

+Hedx+D) > py U,,_zl,-_l(cdx)}. (5.26)
0<j<n/2

Let us now study in more detail the properties of the+21 solutions of the Lamm
equation of the form (5.25), (5.26) that we have just obtained. From the differentiability
properties of the functiong/dnx + cnx ande(x)+/dnx — chx mentioned above, it follows
that¢!(x) andg?(x) areC* solutions of the Lar@ equation (1.1) wittE = E; in the open
interval (—2K, 2K), and are clearly continuous or-2K, 2K]. The product of dhx with
the functions within square brackets in equations (5.25) and (5.26) defings*twWonctions
on the whole real line (they are, in fact, polynomials inksenx, dnx), with (real) period
4K . On the other hand, we can immediately check that if we prol6@9 = +~/dnx +cnx
or f(x) = e(x)v/dnx — cnx outside the interval-{2K, 2K] anti-periodically, i.e. requiring
that

f(x+4K) = —f(x) (5.27)
then f becomes & function. (Indeed, in a neighbourhood ©#PK the prolongations of

+~/dnx +chx ande(x)+/dnx — cnx are equal, respectively, thk’snx/+/dnx — cnx and
+4/dnx — cnx, the latter functions being obviousty* at+2K.) It follows that, if we define
¢}(x) andg?(x) outside [-2K, 2K] by the prescription (5.27), thepf andg? areC> on the
whole real line, and have (real) perio& 8 Furthermore, from equations (5.25) and (5.26) it
follows that¢il(x) andq&iz(x) are, respectively, even and odd functions of the variabli is
also clear from the well known equalities

sn(x + 2K) = —shx cn(x +2K) = —chx dn(x + 2K) = dnx
thatg?! and¢? are related by

P?(x) = o} (x + 2K). (5.28)
From this equality and the anti-periodicity condition (5.27) it follows that

[¢f(x + 2K) £i¢?(x + 2K)]| = Fi [¢f (x) £ i ¢?(x)] (5.29)
so that the quasi-momentum associated with each ofghkelZalgebraic energies; is equal

tor/(4K).
Whenn is odd, it is convenient to rewrite equation (5.25) in the following way:
;(n—l)
2

¢i1(x) =+dnx +cnxdn’ x |:Cdx Z 0ij f’n_zj_l(cdx)
=0

3(n=1)
+(cdx — 1) Z Pij Un—Zj—l(Cd-x):|

=0

3(n=1)

= Jdnx +cnxdntx {cnx Z 0 T_2j_1(cdx)
=0

$(n-1)
+(cnx — dnx) Z Pij Unzjl(cdx):|. (5.30)

j=0
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Taking into account the parity properties of the Chebyshev polynomials, and the factthat cn
and drf x can be expressed linearly in terms of snit follows that

qbl-l(x) = +/dnx +cnx [Cnx a; (srf x) + dnx g; (srf x)] (5.31)

whereq; (t) andg; (¢) are polynomials int of degree%(n — 1) given by

3(n=1)
a;(srfx) =dn"tx Z {Gij To—2j_1(cdx) + p;; Un—2j—1(Cdx)} (5.32)
j=0
1in-1)
Bi(sPx) =—dnx Y~ p;j Uy zj-1(cdx). (5.33)
j=0

Comparing (5.31) with [2] (p 97), we see thygtis proportional to the non-meromorphic Lam
function E¢ /2,

$H(x) ox ECY? 0<i<n=t-1 (5.34)

wherer; is the number of zeros a! in the interval(0, 2K). From equation (5.26) or,
alternatively, from equations (5.28) and (5.31), we also obtain

¢?(x) = e(x)v/dnx — cnx [cnxe; (S x) — dnx Bi (s x)] (5.35)
so that
$?(x) o E§*Y? 0<i<n=t-1. (5.36)
Similarly, whenn is even we rewrite equation (5.25) as follows:

n/2—1

¢} (x) = Vdnx +cnxdn’ x |:p,-_,l/2 + Z 0ij Th—2j(cdx)
j=0

n/2—1
+cdx (cdx — 1) Z Pij Un—Zj—Z(Cdx):|

=0

nj2—1
= /dnx +cnxdn* 2 x |:dn2x (p,;,l/z + Z 0jj Tn_zj(cdx)>

7=0
n2-1
+cnx(cnx — dnx) Z 0ij U,,_zj_z(cdx):|. (5.37)
=0
We thus obtain
¢} (x) = v/dnx +cnx [e; (P x) + cnx dnx B; (s x) ] (5.38)

whereq; (t) andpg; (¢) are polynomials inr of respective degrees/2 andn/2 — 1, defined by

n/2—1 n/2—1
a;(srfx) = dn' x |:pi,n/2 + Z 0ij Th—2; (CdX)} +d" 2 xcrf x Z pij Un—2j-2(cdx)

j=0 j=0

(5.39)
1(n-1

Bi(sPx) =—dn'2x Y p;; Up_sj-2(cdx). (5.40)
j=0
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From (5.28) we have
¢>i2(x) =e(x)+/dnx —cnx [a,- (srf x) — cnx dnx B; (sr? x)]. (5.41)

Comparing, again, with [2] we deduce that equations (5.34) and (5.36) also holdwnidan
even non-negative integer.

5.1. Examples

The casen = 0, i.e. ¢ = % is particularly easy to deal with in the framework of our

formalism. Indeed, in this case we can exactly compute one eigengalud the Lane
Hamiltonian, its corresponding two linearly independent eigenfunctions given by (5.38)—(5.41)
withn = 0:

qbé(x) = +dnx +chx ¢S(x) = e(x)~/dnx — cnx. (5.42)

The eigenvalue is the root of the first-degree polynomiBl or, equivalently, of?; (since
both polynomials differ by a constant factor, by (5.13)). From equation (3.8) jnvithO we
obtain

PI(E) = (E —bo) Po=E — by
and from (5.15) (withh = 0) it follows that
Eo=bo = 3(1+m)=3(1+k?). (5.43)

We have thus shown in a purely algebraic fashion that the general solution of the Lam
equation

Y (x) + 2(1+k% — 3k?srf x)y(x) = 0

is a linear combination of the two functions (5.42).
Similarly, forn =1, i.e.l = g the two algebraic eigenvalues of the Lautdamiltonian
are the roots of the polynomial

Py(E) = E® — 3(m+ DE + 2(3m* + 23n + 3) (5.44)
namely,
Eo .
=3m+D)FVm?2—m+1 (5.45)
1

Their associated eigenfunctions are easily computed using equations (5.31)—(5.33), which for
n = 1lreduce to

a; = 2pijp =2
2, 2,
Bi =pil_pi0=_P1(Ei)_l=_;Pl(Ei)_l=E[Z(m+3)_Ei]_l-

From equation (5.31) we obtain

1
22 } — J/dnx +cnx [m cnx + (1 —m4+ \/nm> dnx] (5.46)
1
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where we have omitted a trivial constant factor. The remaining two eigenfungtjomsde?
can be easily obtained from (5.46) using (5.35):

2

i‘; — e(x) Vdnx — cnx [m cnx — (1 —mEm2—m+ 1) dnx], (5.47)

1

The latter formulae are easily seen to coincide with those at the end of [2].

As in the case of integef, the computation of the non-meromorphic Larfunctions
in closed form quickly becomes unmanageable as the degree of the critical polymymial
increases. For example, for= g (i.e.n = 2) the algebraic eigenfunctions of the form (5.37)
can be expressed as follows:

1
e = /dnx T oy (25— 130n + 87w + (104 + 40) E, — 1657

+m SIF x [25 + 34n + 9m® — (104 + 40n) E; + 16E7]

+2cnx dnx [25 + 430n + 21m® — 8(13 + 1Im)E; + 16E7]} (5.48)
wherekE; is one of the three real roots of the critical polynomial
Py(E) = E® — B(m + D E? + & (37Tm? + 138n + 37) E — 2 (m + 1) (45m? + 794n + 45).

(5.49)
The remaining three eigenfunctiomé (i =0, 1, 2) are obtained from equation (5.48) using
equation (5.41). Whem = % the energie&; can again be computed explicitly, i.e.

Eo
. }z%SJFﬁ E =2 (5.50)
2

Consequently, equation (5.48) for the eigenfunctions yields the following explicit expressions:

_3pt

ng} _ VA von |G+ VD st - 224 Vhonvdny 75207 (651
~2 ¢}
—&¢1 = vdnx +cnx (srfx + 2cnx dnx — 1). (5.52)
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