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Abstract. We develop a new way of writing the Lamé Hamiltonian in Lie-algebraic form. This
yields, in a natural way, an explicit formula for both the Lamé polynomials and the classical non-
meromorphic Laḿe functions in terms of Chebyshev polynomials and of a certain family of weakly
orthogonal polynomials.

1. Introduction

The Laḿe equation,

ψ ′′(x) +
[
E −m`(` + 1) sn2 x

]
ψ(x) = 0 (1.1)

where` is a real parameter‖, and

snx ≡ sn(x|m)
is the usual Jacobian elliptic function of modulusm, occupies a central position in the theory
of differential equations with periodic coefficients. The study of its properties has attracted
the attention of many illustrious mathematicians over the last century; classical references are
[1–4]. Basic properties of the Laḿe equation are as follows. First, it arises by separation of
variables in the Laplace equation in ellipsoidal coordinates. Secondly, it possesses two linearly
independent 2K(k)- or 4K(k)-periodic solutions (for characteristic values ofE) if and only
if ` is a non-negative integer. Herek = √m andK(k) (denoted byK from now on) is the
complete elliptic integral of the first kind with parameterk:

K(k) =
∫ π/2

0

dx√
1− k2 sin2 x

.

Moreover, if` is a non-negative integer there are exactly` gaps in the energy spectrum and
the 2̀ + 1 eigenfunctions associated with the boundaries of the allowed energy bands can be
written as homogeneous polynomials of degree` in the elliptic functions sn, cn, dn. These
polynomial solutions are known as theLamé polynomials. In the third place, forany` ∈ R
and characteristic values ofE the Laḿe equation admits two linearly independent solutions of
period 8K. These solutions are expressible in closed form if and only if` ∈ N + 1

2 and shall
be referred to as thenon-meromorphic Laḿe functions. For both types of solutions, namely
the Laḿe polynomials for integer̀ and the non-meromorphic Lamé functions for half-integer

§ On leave of absence from: Depto de Fı́sica Téorica II, Univ. Complutense de Madrid, Spain.
‖ Without loss of generality, we can assume that` > − 1

2 .
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`, the characteristic values ofE are the solutions of a certain algebraic equation. We shall use
the term ‘algebraic’ to refer to both types of solutions.

The interest of the Laḿe equation is by no means restricted to its mathematical properties.
In fact, several important physical applications have been proposed recently in the literature.
As first remarked in [5], the Laḿe potential can be considered as a realistic model of
a one-dimensional crystal. The Lamé equation also describes some class of fluctuations
of the sphalerons in the Abelian Higgs model in 1 + 1 dimensions [6]. The quantum
fluctuations of the inflaton field in certain cosmological models are determined by the Lamé
equation [7, 8].

The Laḿe equation appears in a natural way in several Lie-algebraic approaches to the
Schr̈odinger equation. Early work in this direction was carried out by Alhassidet al in [5].
In that paper the Laḿe equation was obtained by separation of variables in the eigenvalue
equation for a Hamiltonian quadratic in the generators ofsu(2) written in conical coordinates.
A different Lie-algebraic representation of the Lamé equation was discovered by Turbiner in
[9], where it was shown that for integer` the Laḿe Hamiltonian belongs to the enveloping
algebra of a Lie algebra of first-order differential operators with a finite-dimensional module of
functions. It follows that a number of eigenvalues and the corresponding eigenfunctions of the
Lamé equation can be determined algebraically, i.e. by diagonalizing the finite-dimensional
matrix representing the action of the Hamiltonian in the module. This class of Hamiltonians—
known in the literature asquasi-exactly solvable(QES)—have been the subject of considerable
investigation over the last decade; extensive reviews of this field can be found in [10–12].
In particular, it is known that several periodic potentials of physical interest—such as the
Razavy potential [13, 14], or the so-called associated Lamé potential [4]—possess the QES
property†.

In the above-mentioned papers the Lamé equation was successfully algebraized only for
integer values of̀ , corresponding to the Laḿe polynomials. A first indirect algebraization of
the Laḿe equation for half-integer̀was studied by Ward in [15] in connection with the matrix
Nahm equations. The Laḿe polynomials and the non-meromorphic Lamé functions appear
as solutions of some matrix-valued differential equations related to irreducible representations
of so(3). The Laḿe potential (and some generalizations thereof) was revisited by Ulyanov
and Zaslavskii in [16]. In this paper the Lamé Hamiltonian was obtained from a non-standard
realization ofsu(2) by first-order differential operators, leading to the algebraic solutions
for integer and half-integer values of`. In [17], Brihaye and Godart introduced yet another
indirect algebraization scheme for half-integer values of` based on a system of two second-
order differential equations.

In this paper we shall present a new direct way to algebraize the Lamé equation which is
valid for both the integer and half-integer cases. Our approach is based on the classification of
one-dimensional QES potentials by González-Ĺopezet al [10], and the study of the associated
families of weakly orthogonal polynomials [18]. Our method presents some advantages over
the algebraization considered by Ulyanov and Zaslavskii in [16]. Indeed, the 2` + 1 algebraic
points of the spectrum (corresponding to the boundaries of the energy bands for integer` and
to eigenfunctions of quasi-momentumπ/(4K) for half-integer`) are the roots of a pair of
polynomials of degrees̀and` + 1 for integer̀ , or of a single polynomial of degreè+ 1

2 for
half-integer̀ . This compares to the algebraization by Ulyanov and Zaslavskii, for which one
needs to find the roots of a polynomial of degree 2` + 1. In the second place, it leads to new
general expressions for the algebraic solutions of the Lamé equation in terms of Chebyshev
polynomials and of a certain family of weakly orthogonal polynomials. It should be emphasized

† A notorious exception is the Mathieu potential, which is not QES.
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that in the algebraization schemes mentioned above explicit solutions are presented only for
low (integer or half-integer) values of`.

This paper is organized as follows. In section 2, we introduce the basic definitions and
show how the Laḿe potential can be obtained using the classification of González-Ĺopez,
Kamran and Olver. The algebraization by Ulyanov and Zaslavskii is briefly discussed in this
setting. In section 3, we recall from [18] the basic steps for the construction of a family of
weakly orthogonal polynomials associated with a QES Hamiltonian. Section 4 is devoted to
the integer case. The results of section 3 are used to obtain an expansion in terms of Chebyshev
polynomials which reveals the structure of the classical Lamé polynomials. This expansion
is used to compute the Lamé polynomials for̀ 6 4. In the final section we analyse the half-
integer case. We obtain an expansion of the non-meromorphic Lamé functions using again
Chebyshev polynomials and relate our formulae to the classical results of Ince. In particular,
we check Ince’s formulae for̀6 3

2 and study in detail the casè= 5
2.

2. Algebraizations of the Laḿe equation

If n is a non-negative integer, it is a standard fact that the differential operators

J− = ∂z J0 = z∂z − 1
2n J+ = z2∂z − n z (2.1)

are the basis of a representation of the Lie algebrasl(2,R) in the spacePn of polynomials
of degree at mostn in the variablez [19, 20]. As a consequence, any differential operator
H which is a polynomial in the operators (2.1) preserves the spacePn (the converse is also
true; cf [21, 22]). In particular,n + 1 eigenfunctions and eigenvalues ofH can be computed
algebraically,simply by diagonalizing the finite-dimensional operator obtained by restricting
H toPn. More generally, if we perform the change of variable

z = ζ(x) (2.2)

and consider the operator

H(x) = µ(z) ·H · 1

µ(z)

∣∣∣∣
z=ζ(x)

(2.3)

whereµ(z) is a nowhere-vanishing function, thenH obviously leaves invariant the(n + 1)-
dimensional vector space

µPn =
{
µ
(
ζ(x)

)
p
(
ζ(x)

) | p ∈ Pn}.
Consequently, we can again computen+1 eigenvalues and eigenfunctions ofH in an algebraic
way, by considering its restriction to the finite-dimensional spaceµPn. We shall say that such
an operatorH isquasi-exactly solvable(or, for short, QES) [23]. Of particular physical interest
is the case in which the operatorH is a polynomial of degree two in the generators (2.1), which
we shall write as

H = −
∑

a,b=0,±
cab JaJb −

∑
a=0,±

caJa − c∗. (2.4)

Such an operator can be expressed as

−H = P(z) ∂z2 +
[
Q(z)− 1

2(n− 1) P ′(z)
]
∂z +R − 1

2nQ
′(z) + 1

12n(n− 1)P ′′(z) (2.5)
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where (see [20])

P(z) = c++ z
4 + 2c+0 z

3 + (2c+− + c00) z
2 + 2c0−z + c−−

Q(z) = c+z
2 + c0z + c− (2.6)

R = 1
12n(n + 2) c00− 1

3n(n + 2) c+− + c∗.

Note that, using the Casimir identity

J 2
0 − 1

2(J+J− + J−J+) = 1
4n(n + 2)

we can takec+− = 0 without loss of generality. It can be shown [20] that ifP is positive then
it is always possible to transform (at least locally) the operatorH into aSchr̈odinger operator
(or Hamiltonian)

H = −∂2
x + V (x) (2.7)

by an appropriate change of variable andgauge transformation(2.2) and (2.3). More precisely,
the inverse of the change of variable (2.2) is given by

x =
∫ z

z0

dy√
P(y)

(2.8)

while the gauge factor is proportional to

µ(z) = P(z)−n/4 exp

[∫ z

z0

Q(y)

2P(y)
dy

]
. (2.9)

The potentialV (x) can be expressed in terms of the coefficients of thegauge HamiltonianH
as follows:

V (x) = − 1

12P

[
n(n + 2)

(
PP ′′ − 3

4P
′2) + 3(n + 1)(QP ′ − 2PQ′)− 3Q2

]∣∣
z=ζ(x) − R

(2.10)

where the prime denotes a derivative with respect toz.
All one-dimensional potentials whose Hamiltonian is QES (in the precise sense explained

above) have been completely classified in [10], modulo a constant translation of the space
coordinatex. In particular, the Laḿe equation (1.1) can be obtained from the third family of
periodic potentials (withν = 1), given by

V (x) = A sn2 x +B snx cnx +
C snx cnx +D

dn2 x
. (2.11)

Note that, for later convenience, the above notation is slightly different from that of [10]. The
potential (2.11) is obtained from (2.10) when

P(z) = (1 + z2)
[
1 + (1−m)z2

]
. (2.12)

Indeed, from (2.8) it follows that, in this case,

z = snx

cnx
. (2.13)
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Substituting (2.12) into (2.10) and using (2.13) we find the following explicit formula for the
coefficients in equation (2.11):

A = 1

4
mn(n + 2)− c0

2
(n + 1) +

1

4m

[
c2

0 − (c+ − c−)2
]

(2.14)

B = 1

2m
(c+ − c−)

[
m(n + 1)− c0

]
(2.15)

C = 1

2m

[
c+ + (m− 1)c−

][
m(n + 1) + c0

]
(2.16)

D = 1

4
(m− 1)n(n + 2) +

c0

2m
(m− 1)(n + 1) +

1

4m2

[
(m− 1)c2

0 +
(
c+ + (m− 1)c−

)2]
.

(2.17)

Note that we have taken

c∗ = 1

4m2

[
(2m− 1) c2

− + (1−m) (c2
0 + 2c+c−)− c2

+

]
+
c0

2m
(n + 1)− 1

4
n(n + 2) (2.18)

in order to eliminate a constant term in the potential. Comparing (1.1) with (2.11) we obtain
the system

A = m`(` + 1) B = C = D = 0

which has the following four sets of solutions:

n = ` c+ = c− = 0 c0 = −m` (2.19)

n = `− 1 c+ = c− = 0 c0 = −m(` + 1) (2.20)

n = `− 1
2 c+ = c− = i

√
1−m c0 = −m

(
` + 1

2

)
(2.21)

n = `− 1
2 c+ = c− = −i

√
1−m c0 = −m

(
` + 1

2

)
. (2.22)

The first two solutions are valid wheǹis a non-negative integer (` > 1 for the second solution
to exist), while the last two solutions hold when` is a positive half-integer. From the previous
general discussion it follows that when` is a non-negative integer or a positive half-integer a
certain number of eigenfunctions and eigenvalues of the Lamé Hamiltonian can be computed in
a purely algebraic fashion, by solving the eigenvalue problem of the restriction of the operator
H corresponding to the Hamiltonian (1.1) to the finite-dimensional spacePn, wheren is given
by (2.19)–(2.22). An explicit expression for the gauge HamiltonianH can be easily found
from equations (2.4), (2.6), (2.12) and (2.19)–(2.22), namely

−H =


(1−m) J 2

+ + (2−m) J 2
0 + J 2

− −m`J0 + c∗
(1−m) J 2

+ + (2−m) J 2
0 + J 2

− −m(` + 1) J0 + c∗

(1−m) J 2
+ + (2−m) J 2

0 + J 2
− + i
√

1−m(J+ + J−)−m
(
` + 1

2

)
J0 + c∗

(1−m) J 2
+ + (2−m) J 2

0 + J 2
− − i

√
1−m(J+ + J−)−m

(
` + 1

2

)
J0 + c∗.

(2.23)

Each of the four cases in this formula corresponds to the respective solution (2.19)–(2.22),
and it is understood that in each case the operatorsJε (ε = 0,+) and the constantc∗ must
be computed using the value ofn for the corresponding solution (2.19)–(2.22). Note that
equation (2.23) is essentially equivalent to equations (7)–(9) of [9]. The latter equations,
however, appear more complicated than (2.23), due to the fact that [9] uses the Weierstrassian
form of Lamé’s equation.
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Before studying in more detail the four algebraizations (2.19)–(2.22) of the Lamé equation
obtained in this section, it is worth pointing out that there are other alternative algebraizations
within the general formalism described above. Indeed, from the identity

dn−2(x +K) = dn2 x

1−m =
1

1−m −
m

1−m sn2 x

and the fact that the potentials in [10] are classified up to constant translations, it can be shown
that the Laḿe potential is a member of the first two families of periodic QES potentials listed
in the latter reference. For the same reason, we could also have derived the Lamé equation by
equating to zero the coefficientsA, B andC in equation (2.11). It can be shown that all of
these ways of algebraizing the Lamé equation are essentially equivalent to that adopted in this
paper. Finally, there are other less obvious algebraizations of the Lamé equation such as, for
instance, the non-standard one discussed in [16], which falls within our framework by taking

H = (1−m) J 2
0 + 1

4m(J+ + J−)2 .

From equation (2.6) it follows that in this case

P(z) = − [ 1
4mz

4 +
(
1− 1

2m
)
z2 + 1

4m
]

Q(z) = 0 R = 1
12(2m− 1)n(n + 2).

It is straightforward to show that thecomplexchange of variable

z = cnx + i snx

(cf equation (2.8)) and the gauge transformation defined by (2.3) and (2.9) mapH into the
Schr̈odinger operator (2.7) with potential

V (x) = −m(1−m) 1
2n
(

1
2n + 1

) sn2 x

dn2 x

= 1
2mn

(
1
2n + 1

) [
sn2(x +K)− 1

]
(2.24)

which is essentially the Laḿe potential with̀ = n/2. SinceP(z) is negative everywhere and
all its roots are complex, it can be mapped to a negative multiple of the polynomial (2.12) by a
projective change of variable and gauge transformation. As explained in [10], this means that
the potential (2.24) can be obtained by a suitable choice of parameters in the third family of
QES periodic potentials (with pure imaginary frequency

√
ν).

3. QES potentials and weakly orthogonal polynomials

We summarize in this section the main ideas of the procedure developed in [18] to construct
a family of weakly orthogonal polynomials associated with a QES potential. This method
will be used in the following to analyse the structure of the algebraic solutions of the Lamé
equation.

The original idea of the method was introduced by Bender and Dunne in [24], who showed
that a certain expansion of the algebraic eigenfunctions of a QES sextic potential defines a
family of weakly orthogonal polynomials. It was later proved in [18] that (almost) any QES
potential can be associated with a family of weakly orthogonal polynomials via a suitable
expansion of the corresponding algebraic eigenfunctions. In order to find the appropriate
expansion, one first writes the solutions of the gauged eigenvalue equation

HχE = EχE
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as a formal power series in the variablez,

χE(z) =
∞∑
j=0

Pj (E)
zj

j !
.

The coefficientsPj (E) are easily found to satisfy the five-term recursion relation

−c−−Pj+2 =
[
(2j − n + 1)c0− + c−

]
Pj+1 +

[
E + c∗ + c0

(
j − 1

2n
)

+ c00
(
j − 1

2n
)2]

Pj

+j (j − 1− n) [(2j − n− 1)c+0 + c+] Pj−1

+j (j − 1)(j − 1− n)(j − 2− n) c++Pj−2 j > 0. (3.1)

If c−− = c++ = 0 and the coefficient ofPj+1 does not vanish for anyj > 0, choosingP−1 = 0,
P0 = 1, each coefficientPj with j > 1 is then a polynomial inE of the j th degree. The
conditionc−− = c++ = 0 means that the polynomialP(z) in (2.6) vanishes atz = 0,∞, when
z takes values in the complex projective lineCP.

In the second step, one ensures that the conditionsc−− = c++ = 0 hold by performing a
suitable complex projective change of variable,

z = αw + β

γw + δ
α, β, γ, δ ∈ C 1 ≡ αδ − βγ 6= 0 (3.2)

and a gauge transformation with gauge factor

µ̂(z) = (γw + δ)n. (3.3)

The corresponding eigenfunctions in the variablew are thus

χ̂E(w) = (γw + δ)nχE
(αw + β

γw + δ

)
.

The transformed gauge Hamiltonian̂H is still of the form (2.5), with the polynomialsP(z),
Q(z) andR replaced by the polynomials

P̂ (w) = (γw + δ)4

12
P
(αw + β

γw + δ

)
= ĉ++w

4 + 2ĉ+0w
3 + ĉ00w

2 + 2ĉ0−w + ĉ−−

Q̂(w) = (γw + δ)2

12
Q
(αw + β

γw + δ

)
= ĉ+w

2 + ĉ0w + ĉ− (3.4)

R̂ = R = 1
12n(n + 2)ĉ00 + ĉ∗.

In our case, the polynomialP(z) possesses four different complex roots; see
equation (2.12). Ifz1 andz2 denote two such roots, the relevant gauge transformation can
be taken as

w = z− z1

z− z2
. (3.5)

The resulting algebraic eigenfunctions (expressed in the physical coordinatex) are of the form

ψE(x) = µ
(
ζ(x)

) (
ζ(x)− z2

)n ∞∑
j=0

Pj (E)

j !

(
ζ(x)− z1

ζ(x)− z2

)j
(3.6)

with ζ(x) and µ
(
ζ(x)

)
given by equations (2.13) and (4.1) or (5.1), respectively. The

coefficientsPj (E) in this expansion satisfy a recursion relation of the form (3.1) where the
coefficientscab, ca, c∗ (a, b = ±, 0) are replaced bŷcab, ĉa, ĉ∗ with ĉ−− = ĉ++ = 0. From
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equations (3.2), (3.4) and (3.5) it follows that the coefficient ofPj+1 in this recursion relation
does not vanish for anyj > 0 provided

(2j − n + 1) P ′(z1) + 2Q(z1) 6= 0 ∀j > 0. (3.7)

If this condition holds, the polynomialsPj (E) can be normalized to monic polynomialsP̂j (E)
satisfying a recursion relation of the form

P̂j+1 = (E − bj ) P̂j − aj P̂j−1 j > 0 (3.8)

with P̂−1 = 0. The coefficientan+1 vanishes, and therefore the set{P̂j }j>0 is a family of
weaklyorthogonal polynomials; see [18] for more details. We shall prove that in our case the
coefficientsaj are strictly positive for 16 j 6 n. By lemma 1 (section 1.8) of [4], it follows
that thecritical polynomialP̂n+1 (or Pn+1) hasn + 1 different real rootsEi , 06 i 6 n. Since
the recursion relation (3.8) implies that each of these roots is also a root of the polynomials
Pj (E) with j > n + 1, for i = 0, 1, . . . , n the functionψEi (x) is a genuine solution of
the Laḿe equation (1.1) with energyE = Ei . Thesen + 1 exact solutions can be obtained
algebraically,by computing thenpolynomialsP1(E), . . . , Pn(E) from the recurrence relation,
and in fact coincide with then + 1 eigenfunctions of the Laḿe HamiltonianH algebraically
computable by diagonalizing the restriction ofH toµPn (or, equivalently, the restriction ofH
toPn).

4. Case I:` is a non-negative integer

We shall show in this section that when` is a non-negative integer the algebraic eigenfunctions
of the Laḿe Hamiltonian are the classical Lamé polynomials [4].

From equations (2.9), (2.13) and (2.19), (2.20) we deduce that in this case the gauge factor
verifies

µ (ζ(x)) =
{

cn` x n = `
cn`−1 x dnx n = `− 1

(4.1)

where we have dropped some irrelevant numerical factors. From equations (2.3), (2.13) and
(4.1), it follows that wheǹ is a non-negative integer then the Lamé Hamiltonian has̀ + 1
eigenfunctions of the form

ψ(x) = cn` x · χ
(snx

cnx

)
whereχ is a polynomial of degree at most`. Thus we can write

ψ(x) = χ̃(snx, cnx) (4.2)

whereχ̃ is a homogeneous bivariate polynomial of degree`. Similarly, if ` is strictly positive
then there arè additional eigenfunctions of the Lamé Hamiltonian of the form

ψ(x) = dnx · η̃(snx, cnx) (4.3)

whereη̃ is a homogeneous polynomial in two variables of degree` − 1. Thus, wheǹ is a
non-negative integer the Lamé Hamiltonian admits 2̀+1 algebraic eigenfunctions of the form
(4.2) and (4.3).

To show that the latter 2̀+ 1 algebraic eigenfunctions are indeed the classical Lamé
polynomials, we need to study equations (4.2) and (4.3) in more detail. Fortunately, this can
be done in a totally systematic way, by applying the procedure described in the previous section
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for associating a weakly orthogonal polynomial family to a one-dimensional QES Hamiltonian.
One can immediately verify that (3.7) is satisfied for both solutions (2.19) and (2.20) simply by
takingz1 = −i. If we choosez2 = i, from equation (3.6) we obtain the following expression
(up to a constant factor) for thè+ 1 exact eigenfunctions of the Lamé Hamiltonian coming
from the first algebraization (2.19):

ψEi (x) =
∑̀
j=0

(−1)j

j !
Pj (Ei) (cnx + i snx)`−j (cnx − i snx)j 06 i 6 ` (4.4)

where thè + 1 energiesEi satisfy

P`+1(Ei) = 0 06 i 6 `. (4.5)

In the same way, the second algebraization (2.20) yields the` eigenfunctions

ψẼi (x) = dnx
`−1∑
j=0

(−1)j

j !
P̃j (Ẽi)(cnx + i snx)`−1−j (cnx − i snx)j 06 i 6 `− 1

(4.6)

where{P̃j }j>0 is the orthogonal polynomial family constructed from the solution (2.20) and
the` energiesẼi are given by

P̃`(Ẽi) = 0 06 i 6 `− 1. (4.7)

We shall next derive the recurrence relation defining the polynomialsPj andP̃j . As it
was shown in section 3, the latter relation is determined by the coefficients of the auxiliary
polynomialsP̂ (w), Q̂(w) in (3.4) obtained by applying toP(z) andQ(z) the projective
transformation (3.5) withz1 = −i = −z2, namely

P̂ (w) = (1− w)4
(z1− z2)2

P

(
z1− z2w

1− w
)

(4.8)

Q̂(w) = (1− w)2
z1− z2

Q

(
z1− z2w

1− w
)
. (4.9)

From equations (2.12) and (4.8) we easily obtain the following formula forP̂ , valid for both
algebraizations (2.19) and (2.20):

P̂ (w) = mw3− 2(2−m)w2 +mw. (4.10)

Similarly, equations (2.6) and (4.9) imply that the polynomialQ̂ associated with the first
algebraization (2.19) is given by

Q̂ = 1
2m` (w

2 − 1) (4.11)

while for the second algebraization (2.20) we obtain

Q̂ = 1
2m(` + 1) (w2 − 1). (4.12)

Following [18], we define the normalized polynomialsP̂j (E) and ˆ̃Pj (E) by

P̂j (E)

ˆ̃
Pj (E)

}
= ( 1

2m
)j (2`− 1)!!

(2`− 2j − 1)!!

{
Pj (E)

P̃j (E).
(4.13)
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The polynomialsP̂j satisfy a recurrence relation of the form (3.8) withP̂−1 = 0 and

aj = 1
4m

2j (2j − 1) (2`− 2j + 1) (`− j + 1) (4.14)

bj = 1
2m` (` + 1) + 1

2(2−m) (`− 2j)2. (4.15)

Likewise, the polynomialŝ̃Pj verify the recurrence relation

ˆ̃
Pj+1 = (E − b̃j ) ˆ̃Pj − ãj ˆ̃Pj−1 j > 0 (4.16)

where ˆ̃P−1 = 0 and the coefficients̃aj andb̃j are given by

ãj = 1
4m

2j (2j + 1) (2`− 2j + 1) (`− j) (4.17)

b̃j = 1
2m` (` + 1) + 1

2(2−m) (`− 2j − 1)2. (4.18)

Note that from the normalizationP0 = P̃0 = 1 and equation (4.13) it follows that

P̂0 = ˆ̃P0 = 1. (4.19)

Furthermore, equations (4.14) and (4.17) imply that the coefficientsaj and ãj are strictly
positive for 16 j 6 ` and 16 j 6 `− 1, respectively. This guarantees that all the roots of

the critical polynomialsP̂`+1 and ˆ̃P` are real and simple, as we had anticipated in section 3.
Our next task is to simplify equations (4.4) and (4.6) using the properties of the polynomials

Pj andP̃j . We shall start by proving the following useful result:

Proposition 4.1. The algebraic eigenfunctions (4.4) and (4.6) are always either real or purely
imaginary.

Proof. Let us rewrite equations (4.4) and (4.6) in terms of the elliptic amplitudeϕ(x) = amx,
defined by

cnx + i snx = ei ϕ(x).

We thus obtain the expressions

ψEi (x) =
∑̀
j=0

pij ei(`−2j)ϕ(x) 06 i 6 ` (4.20)

and

ψẼr (x) = dnx
`−1∑
s=0

p̃rs ei(`−2s−1)ϕ(x) 06 r 6 `− 1 (4.21)

where we have set, for convenience,

pij = (−1)j

j !
Pj (Ei) p̃rs = (−1)s

s!
P̃s(Er). (4.22)

Let us concentrate, for definiteness, on the eigenfunctions of type (4.20). We rewrite
equation (4.20) in the form

ψEi (x) =
∑

06j<`/2

[
pij ei(`−2j)ϕ(x) + pi,`−j e−i(`−2j)ϕ(x)

]
+ pi,`/2 (4.23)
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where we takepi,`/2 = 0 when` is odd. Taking into account that, by the recurrence relation
(3.8), (4.14) and (4.15), all the coefficientspij are real, we conclude from equation (4.23) that

ReψEi (x) =
∑

06j<`/2

(
pij + pi,`−j

)
cos(`− 2j)ϕ(x) + pi,`/2 (4.24)

ImψEi (x) =
∑

06j<`/2

(
pij − pi,`−j

)
sin(`− 2j)ϕ(x). (4.25)

Let us now introduce the polynomial family

πj (E) = (−1)j

j !
Pj (E) (4.26)

in terms of which the coefficientspij are simply expressed by

pij = πj (Ei) 06 i, j 6 `.
Defining two additional families of univariate polynomialsσj (E) andρj (E) by

σj (E) = πj (E) + π`−j (E) ρj (E) = πj (E)− π`−j (E) (4.27)

from equations (4.24) and (4.25) we have

ReψEi ≡ 0 ⇐⇒ σj (Ei) = 0 for 06 j 6 [`/2]

ImψEi ≡ 0 ⇐⇒ ρj (Ei) = 0 for 06 j < `/2

(where [· ] denotes the integer part). From equations (4.13)–(4.15) and (4.26), it immediately
follows that the polynomialsπj (E) satisfy the three-term recurrence relation

(j + 1)(2`− 2j − 1)πj+1 = 2

m
(bj − E)πj − (2j − 1)(`− j + 1)πj−1 (4.28)

with the initial conditions

π−1(E) = 0 π0(E) = 1 (4.29)

where the coefficientsbj are defined by equation (4.15). It is easy to see that equation (4.27)
implies that the polynomial families

{
σj (E)

}
j>0 and

{
ρj (E)

}
j>0 satisfy the same three-term

recurrence relation (4.28) as the family
{
πj (E)

}
j>0. Moreover, from equation (4.5) we obtain

σ−1(Ei) = ρ−1(Ei) = 0 06 i 6 `. (4.30)

From this, and the fact that the coefficients
{
σj (Ei)

}
j>0 and

{
ρj (Ei)

}
j>0 satisfy athree-term

recursion relation of the type (4.28) (withE = Ei), we conclude that the vanishing ofσ0(Ei)

or of ρ0(Ei) automatically implies the vanishing ofσj (Ei) or of ρj (Ei), respectively, for all
values ofj > 0. Thus we can write

ReψEi ≡ 0⇐⇒ σ0(Ei) = 0 ImψEi ≡ 0⇐⇒ ρ0(Ei) = 0. (4.31)

To complete the proof of the proposition, we simply note that equations (4.29) and (4.30) and
the fact that

{
σj (Ei)

}
j>0 and

{
ρj (Ei)

}
j>0 satisfy thesamethree-term recursion relation as{

πj (E)
}
j>0 imply that

σj (Ei) = σ0(Ei) πj (Ei) j > 0

and, in particular,

σ0(Ei) = σ`(Ei) = σ0(Ei) π`(Ei)

⇐⇒ σ0(Ei) [1− π`(Ei)] ≡ σ0(Ei) ρ0(Ei) = 0. (4.32)
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The proof for the eigenfunctions of type (4.21) is totally analogous, and will therefore be
omitted. �

Let us order, from now on, thè+ 1 algebraic eigenvaluesEi of the Laḿe equation in
increasing order, i.e.

E0 < E1 < · · · < E`−1 < E`

and similarly for thè eigenvalues̃Ei . From lemma 1 (section 1.8) of [4] and the positivity of
aj for 16 j 6 ` we easily deduce that

sign
[
(−1)`P`(Ei)

] = (−1)i (4.33)

which implies (by equation (4.26)) thatπ`(Ei) has the sign of(−1)i . Thus for eveni we have
σ0(Ei) = 1 +π`(Ei) > 0 and from (4.32) we conclude thatρ0(Ei) = 0. In the same way we
establish thatσ0(Ei) = 0 for oddi. From equation (4.31) we obtain

ReψE2r+1 = ImψE2r = 0. (4.34)

We can therefore write thè+ 1 exact eigenfunctions of type (4.4) of the Lamé equation as the
Jacobi–Fourier series

φ2r (x) ≡ ψE2r (x) =
∑

06j<`/2
σ2r,j cos(`− 2j)ϕ(x) + p2r,`/2 (4.35)

φ2s+1(x) ≡ 1

i
ψE2s+1(x) =

∑
06j<`/2

ρ2s+1,j sin(`− 2j)ϕ(x) (4.36)

with

σ2r,j ≡ σj (E2r ) = p2r,j + p2r,`−j ρ2s+1,j ≡ ρj (E2s+1) = p2s+1,j − p2s+1,`−j (4.37)

and

06 r 6
[

1
2`
]

06 s 6
[

1
2(`− 1)

]
. (4.38)

We can derive in a totally analogous way an equivalent formula for the` eigenfunctions of
type (4.23), namely

φ̃2r (x) ≡ ψẼ2r
(x) = dnx

p̃2r, 1
2 (`−1) +

∑
06j< 1

2 (`−1)

σ̃2r,j cos(`− 2j − 1)ϕ(x)

 (4.39)

φ̃2s+1(x) ≡ 1

i
ψẼ2s+1

(x) = dnx
∑

06j< 1
2 (`−1)

ρ̃2s+1,j sin(`− 2j − 1)ϕ(x) (4.40)

where now

σ̃2r,j = p̃2r,j + p̃2r,`−j−1 ρ̃2s+1,j = p̃2s+1,j − p̃2s+1,`−j−1 (4.41)

and

06 r 6
[

1
2(`− 1)

]
06 s 6

[
1
2`
]− 1. (4.42)

Our next step is to further simplify equations (4.35)–(4.42) for the algebraic eigenfunctions
of the Laḿe Hamiltonian. To this end, recall that by construction the Chebyshev polynomials
Tj andUj (j = 0, 1, 2, . . .) satisfy the identities

cos(jα) = Tj (cosα) (4.43)

sin(jα) = sinα Uj−1(cosα) (4.44)
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where the latter equality is formally valid forj = 0 if we setU−1 = 0. It follows that

φ2r (x) =
∑

06j<`/2
σ2r,j T`−2j (cnx) + p2r,`/2 (4.45)

φ2s+1(x) = snx
∑

06j<`/2
ρ2s+1,j U`−2j−1(cnx) (4.46)

and, similarly,

φ̃2r (x) = dnx

p̃2r, 1
2 (`−1) +

∑
06j< 1

2 (`−1)

σ̃2r,j T`−2j−1(cnx)

 (4.47)

φ̃2s+1(x) = snx dnx
∑

06j< 1
2 (`−1)

ρ̃2s+1,j U`−2j−2(cnx). (4.48)

It is now straightforward to check that equations (4.45)–(4.48) encompass the eight types
of classical Laḿe polynomials listed in [4]. Indeed, note first of all that the polynomialsTj (t)

andUj(t) have the parity of(−1)j under the reflectionx 7→ −x. Therefore, the formulae

T̃2j (t) = T2j+1(t)

t
Ũ2j (t) = U2j+1(t)

t
j = 0, 1, 2, . . . . (4.49)

define even polynomials̃T2j (t) and Ũ2j (t) of degree 2j . If ` = 2N (N = 1, 2, . . .),
equations (4.45)–(4.48) yield the following four types of polynomial—in sn, cn, dn—solutions
of the Laḿe equation:

φ2r (x) = p2r,N +
N−1∑
j=0

σ2r,j T2N−2j (cnx) ≡ αr(sn2 x) (4.50)

φ2s+1(x) = snx cnx
N−1∑
j=0

ρ2s+1,j Ũ2N−2j−2(cnx) ≡ snx cnx βs(sn2 x) (4.51)

φ̃2s(x) = cnx dnx
N−1∑
j=0

σ̃2s,j T̃2N−2j−2(cnx) ≡ cnx dnx α̃s(sn2 x) (4.52)

φ̃2s+1(x) = snx dnx
N−1∑
j=0

ρ̃2s+1,j Ũ2N−2j−2(cnx) ≡ snx dnx β̃s(sn2 x) (4.53)

where

06 r 6 N 06 s 6 N − 1 (4.54)

andαr(t), βs(t), α̃s(t) andβ̃s(t) are polynomials of respective degrees

degαr = N degβs = degα̃s = degβ̃s = N − 1. (4.55)

Similarly, if ` = 2N + 1 (N = 0, 1, 2, . . .) the exact solutions of the Laḿe equation (4.45)–
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(4.48) can be written as follows:

φ2r (x) = cnx
N∑
j=0

σ2r,j T̃2N−2j (cnx) ≡ cnx γr(sn2 x) (4.56)

φ2r+1(x) = snx
N∑
j=0

ρ2r+1,j U2N−2j (cnx) ≡ snx δr(sn2 x) (4.57)

φ̃2r (x) = dnx

[
p̃2r,N +

N−1∑
j=0

σ̃2r,j T2N−2j (cnx)

]
≡ dnx γ̃r (sn2 x) (4.58)

φ̃2s+1(x) = snx cnx dnx
N−1∑
j=0

ρ̃2s+1,j Ũ2N−2j−2(cnx) ≡ snx cnx dnx δ̃s(sn2 x) (4.59)

where the range of the indicesr, s is still given by equation (4.54) andγr(t), δr(t), γ̃r (t) and
δ̃s(t) are polynomials with

degγr = degδr = degγ̃r = N degδ̃s = N − 1. (4.60)

4.1. Examples

The explicit expressions for the Lamé polynomials in terms of Chebyshev polynomials derived
at the end of the previous section can be used to algorithmically compute the Lamé polynomials
and their corresponding energies for low values of`.

When` = 1, equations (4.56)–(4.59) forN = 0 immediately yield the following well
known formulae for the Laḿe polynomials of order 1:

φ0(x) ∝ cnx φ1(x) ∝ snx φ̃0 ∝ dnx. (4.61)

The critical polynomialsP̂2 and ˆ̃P1 are easily computed using the recurrence relations (3.8),
(4.14)–(4.18), with the result

P̂2(E) = E2 − (m + 2)E +m + 1 ˆ̃
P1(E) = E −m. (4.62)

The energies associated with the eigenfunctions (4.61) are just the roots of each of the latter
polynomials ordered increasingly, namely

E0 = 1 E1 = m + 1 Ẽ0 = m. (4.63)

For` = 2 the critical polynomials are

P̂3(E) = E3− (5m + 8)E2 + 4(m2 + 8m + 4)E − 12m(m + 4) (4.64)

ˆ̃
P2(E) = E2 − (5m + 2)E + (m + 1)(4m + 1). (4.65)

The energies corresponding to the Lamé polynomials of order two are therefore given by

E0

E2

}
= 2

(
1 +m∓

√
m2 −m + 1

)
E1 = 4 +m (4.66)

Ẽ0 = m + 1 Ẽ1 = 4m + 1. (4.67)



A new algebraization of the Laḿe equation 1533

Note that the factor of 2 in (4.66) is missing in [4], p 205. The Lamé polynomials are easily
computed using (4.50)–(4.53) withN = 1, with the following result:

− 1
4φ0

− 1
4φ2

}
= sn2 x − 1

3m

(
1 +m±

√
m2 −m + 1

)
(4.68)

1
4φ1 = snx cnx (4.69)

1
2φ̃0 = cnx dnx 1

4φ̃1 = snx dnx. (4.70)

When` = 3 the critical polynomials are given by

P̂4(E) =
[
E2 − 2(5 + 2m)E + 3(3 + 8m)

] [
E2 − 10(1 +m)E + 3(3m2 + 26m + 3)

]
(4.71)

ˆ̃
P3(E) = [E − 4(m + 1)]

[
E2 − 2(2 + 5m)E + 3m(3m + 8)

]
(4.72)

from which the following exact energies are computed:

E0

E2

}
= 2m + 5∓ 2

√
m2 −m + 4 (4.73)

E1

E3

}
= 5(m + 1)∓ 2

√
4m2 − 7m + 4 (4.74)

Ẽ0

Ẽ2

}
= 5m + 2∓ 2

√
4m2 −m + 1 (4.75)

Ẽ1 = 4(m + 1). (4.76)

From equations (4.56)–(4.59) withN = 1, the corresponding Laḿe polynomials are given by

− 1
8φ0

− 1
8φ2

}
= cnx

[
sn2 x − 1

5m

(
m + 2±

√
m2 −m + 4

)]
(4.77)

− 1
8φ1

− 1
8φ3

}
= snx

[
sn2 x − 1

5m

(
2(m + 1)±

√
4m2 − 7m + 4

)]
(4.78)

− 1
4φ̃0

− 1
4φ̃2

}
= dnx

[
sn2 x − 1

5m

(
2m + 1±

√
4m2 −m + 1

)]
(4.79)

1
4φ̃1 = snx cnx dnx. (4.80)

The latter formulae for the Laḿe polynomials of order three and their corresponding energies
are seen to coincide with those given in [4].

When ` is greater than three, it becomes increasingly more difficult to compute the
Lamé polynomials of order̀ and their corresponding eigenfunctions in closed form. This

is essentially due to the fact that the high degree of the critical polynomialsP̂` and ˆ̃P`+1 in
general makes it impossible to exactly compute the energiesEi andẼi , which enter in the
definition of the coefficientspij andp̃ij . For example, for̀ = 4 the critical polynomialsP̂5
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and ˆ̃P4 are given by

P̂5(E) =
[
E2 − 10E(2 +m) + 64 + 136m + 9m2

]
× [E3− 20E2(1 +m) + 16E(4 + 21m + 4m2)− 640m(1 +m)

]
(4.81)

ˆ̃
P4(E) =

[
E2 − 10E(1 +m) + 9 + 46m + 9m2

] [
E2 − 10E(1 + 2m) + 9 + 136m + 64m2

]
.

(4.82)

It is not difficult to verify that the roots of the quadratic factor ofP5 are the energiesE1 and
E3, so that we have the exact formula

E1

E3

}
= 5(m + 2)∓

√
4m2 − 9m + 9. (4.83)

The corresponding Laḿe polynomials are easily computed using equation (4.51):

− 1
16φ1

− 1
16φ3

}
= snx cnx

[
sn2 x − 1

7m

(
2m + 3±

√
4m2 − 9m + 9

)]
. (4.84)

Similarly, the fact thatP̃4 factorizes into two quadratic polynomials allows us to exactly
compute the energies̃Ei in this case, obtaining

Ẽ0

Ẽ2

}
= 5(m + 1)∓ 2

√
4m2 +m + 4 (4.85)

Ẽ1

Ẽ3

}
= 5(2m + 1)∓ 2

√
9m2 − 9m + 4. (4.86)

By equations (4.52)–(4.53), the corresponding eigenfunctions are given by

− 1
8φ̃0

− 1
8φ̃2

}
= cnx dnx

[
sn2 x − 1

7m

(
2(m + 1)±

√
4m2 +m + 4

)]
(4.87)

− 1
16φ̃1

− 1
16φ̃3

}
= snx dnx

[
sn2 x − 1

28m

(
5m + 8± 4

√
9m2 − 9m + 4

)]
. (4.88)

The remaining Laḿe polynomials of order four can be expressed using equation (4.50) in terms
of the three rootsEi (i = 0, 2, 4) of the cubic factor ofP̂5, with the following result:

1
16φi = sn4 x − 1

14m
[16(m + 1)− Ei ] sn2 x

+
1

280m2

[
E2
i − 20(m + 1)Ei + 64m2 + 296m + 64

]
. (4.89)

For instance, form = 1
2 the rootsE0, E2 andE4 can be computed in closed form:

E0

E4

}
= 10∓ 2

√
13 E2 = 10. (4.90)

Substituting into equation (4.89) we obtain the following exact expressions for the
corresponding Laḿe polynomials form = 1

2:
1
16φ0

1
16φ4

}
= sn4 x − 2

7

(
7±
√

13
)

sn2 x + 2
7

(
4±
√

13
)

(4.91)

1
16φ2 = sn4 x − 2 sn2 x + 2

5. (4.92)
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5. Case II: ` is a positive half-integer

This is the most interesting case, since we shall see that it leads to the non-meromorphic Lamé
functions, whose algebraization has proved more difficult than that of the Lamé polynomials.

The gauge factor can be computed from equations (2.9), (2.13) and (2.21), (2.22), with
the result

µ (ζ(x)) = cnn x (cnx ± i k′ snx)1/2. (5.1)

The upper and lower signs in this formula correspond, respectively, to the solutions (2.21) and
(2.22),

n = `− 1
2 (5.2)

and we are using the customary notation

k = √m k′ = √1−m. (5.3)

Thus wheǹ is a positive half-integer the Laḿe equation has 2n+2= 2`+1 algebraic solutions
of the form

ψ±(x) = cnn x (cnx ± i k′ snx)1/2 χ±
(snx

cnx

)
(5.4)

whereχ± is a polynomial of degree at mostn.
We shall now use the same strategy as in the previous section to simplify the eigenfunctions

(5.4). It is straightforward to check that in this case only the two roots±i/k′ of the polynomial
P(z) in (2.12) satisfy (3.7). For reasons that shall become clear later, we shall choose

z1 = ∓ i

k′
z2 = ± i

k′

where again the upper sign corresponds to (2.21) and the lower sign to (2.22). Using the same
convention for the eigenfunctionsψ±

E±i
and the polynomialsP±j , a straightforward calculation

yields

ψ±
E±i
(x) =

n∑
j=0

(−1)j

j !
P±j (E

±
i ) (cnx ± i k′ snx)n−j+1/2(cnx ∓ i k′ snx)j . (5.5)

We have dropped an inessential constant factor in the latter formula, and the energiesE±i are
defined by

P±n+1(E
±
i ) = 0 06 i 6 n. (5.6)

(We shall prove below that the roots ofP±n+1 are indeed real and simple.)
We now compute the polynomialsP±j , or more precisely the recurrence relation defining

them. In principle, we should use the notationP̂±(w) andQ̂±(w) to denote the polynomials
P̂ (w), Q̂(w) in equations (4.8) and (4.9) corresponding to each of the two cases (2.21) and
(2.22). Remarkably, a direct calculation shows that this is actually unnecessary, since

P̂ +(w) = P̂−(w) ≡ P̂ (w) = − [mw3 + 2(2−m)w2 +mw
]

(5.7)

Q̂+(w) = Q̂−(w) ≡ Q̂(w) = 1
2m(n + 2)w2 + (2−m)w − 1

2mn. (5.8)
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This implies that the recurrence relations determining the two sets of orthogonal polynomials{
P±j (E)

}
j>0 are in fact the same†. Since we have normalized both sets so thatP±0 (E) = 1,

it follows that both polynomial families are identical, namely

P +
j (E) = P−j (E) ≡ Pj (E) j = 0, 1, 2, . . . . (5.9)

In particular, the above equality forj = n + 1 and equation (5.6) show that

E+
i = E−i ≡ Ei 06 i 6 n. (5.10)

Moreover, to each of thesen+ 1 energies correspond two algebraic eigenfunctions of the form
(5.5), which on account of (5.9) can be written as

ψ±Ei =
n∑
j=0

(−1)j

j !
Pj (Ei) (cnx ± i k′ snx)n−j+1/2(cnx ∓ i k′ snx)j . (5.11)

From equations (5.7) and (5.8) we see that the coefficients of the polynomialsP̂ (w) and
Q̂(w) are all real. This implies, cf section 3, that the coefficients of the recurrence relation
determining the polynomialsPj (E) are also real. SinceP0(E) = 1, it follows thatPj (E)
is a polynomial with real coefficients, for allj = 0, 1, . . . . From equation (5.11) and the
positivity of the coefficientaj for 16 j 6 n (cf equation (5.14) below), it follows that all the
energiesEi (06 i 6 n) are real and simple and therefore

ψ−Ei = ψ+
Ei

06 i 6 n
where the overbar denotes complex conjugation. If we set

ψi(x) ≡ ψ+
Ei
(x) 06 i 6 n

then for each rootEi of Pn+1 the Laḿe equation hastwoalgebraicreal-valued solutions given
by

φ1
i (x) = Reψi(x) φ2

i (x) = Imψi(x). (5.12)

The recurrence relation satisfied by the polynomialsPj (E) can be easily written down from
(5.7) and (5.8) using the procedure presented in section 3. Indeed, the normalized polynomials
P̂j (E) defined by

Pj (E)

j !
=
(

2

k

)2j
P̂j (E)

(2j)!
(5.13)

satisfy a three-term recurrence relation of the form (3.8), with

aj = 1
4m

2j (2j − 1)(2n− 2j + 3)(n− j + 1) (5.14)

bj = 1
4(2n + 1)(m + 2n + 1)− (2−m)j (2n− 2j + 1). (5.15)

We are ready to show that, when` is a half-integer, the 2̀+ 1 algebraic solutions of the
Lamé equation of the form (5.11) and (5.12) obtained in the previous section are precisely the
non-meromorphic Laḿe functions.

To this end, we need to simplify equation (5.11). In the first place, since∣∣cnx ± i k′ snx
∣∣ = dnx (5.16)

† From equation (2.18) we havec+∗ = c−∗ , and from the fact thatR is invariant under projective transformations [20]
and equations (2.6) and (5.7) we obtain

ĉ+
∗ = 1

12n(n + 2)
(
c00− ĉ+

00

)
+ c+
∗ = ĉ−∗ .
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(recall that dnx is positive for all realx), we can write

cnx ± i k′ snx = dnx e±i θ(x) (5.17)

so that

cosθ(x) = cnx

dnx
sinθ(x) = k′ snx

dnx
. (5.18)

Secondly, we have

(cnx + i k′ snx)1/2 = ± 1√
2

(√
dnx + cnx + i ε(x)

√
dnx − cnx

)
(5.19)

where we have set

ε(x) = sign(snx). (5.20)

Note that the functions
√

dnx + cnx andε(x)
√

dnx − cnx areC∞ on the whole real line
except at the pointsx = 2(2r + 1)K. We shall also find useful in the following the identities

√
dnx ± cnx = ε(x) dnx ± cnx

k′ snx

√
dnx ∓ cnx. (5.21)

From (5.17) it follows that
n∑
j=0

pij (cnx + i k′ snx)n−j (cnx − i k′ snx)j = dnn x
n∑
j=0

pij ei (n−2j)θ(x) (5.22)

where the coefficientspij are again defined by equation (4.22). The sum in the latter equation
is of the same type as (4.20) and therefore can be expressed as follows:
n∑
j=0

pij ei (n−2j)θ(x) = pi,n/2 +
∑

06j<n/2
σij Tn−2j

(
cosθ(x)

)
+ i sinθ(x)

∑
06j<n/2

ρij Un−2j−1
(
cosθ(x)

)
= pi,n/2 +

∑
06j<n/2

σij Tn−2j (cdx) + i k′ sdx
∑

06j<n/2
ρij Un−2j−1(cdx)

(5.23)

where we have used the customary abbreviations

cdx ≡ cnx

dnx
sdx ≡ snx

dnx

and we have again set

σij = pij + pi,n−j ρij = pij − pi,n−j . (5.24)

From equations (5.19) and (5.21) (dropping the constant factor±1/
√

2) we easily obtain

φ1
i (x) =

√
dnx + cnx dnn x

[
pi,n/2 +

∑
06j<n/2

σij Tn−2j (cdx)

+(cdx − 1)
∑

06j<n/2
ρij Un−2j−1(cdx)

]
. (5.25)
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An analogous calculation leads to the following expression for the second solutionφ2
i (x):

φ2
i (x) = ε(x)

√
dnx − cnx dnn x

[
pi,n/2 +

∑
06j<n/2

σij Tn−2j (cdx)

+(cdx + 1)
∑

06j<n/2
ρij Un−2j−1(cdx)

]
. (5.26)

Let us now study in more detail the properties of the 2` + 1 solutions of the Laḿe
equation of the form (5.25), (5.26) that we have just obtained. From the differentiability
properties of the functions

√
dnx + cnx andε(x)

√
dnx − cnx mentioned above, it follows

thatφ1
i (x) andφ2

i (x) areC∞ solutions of the Laḿe equation (1.1) withE = Ei in the open
interval (−2K, 2K), and are clearly continuous on [−2K, 2K]. The product of dnn x with
the functions within square brackets in equations (5.25) and (5.26) defines twoC∞ functions
on the whole real line (they are, in fact, polynomials in snx, cnx, dnx), with (real) period
4K. On the other hand, we can immediately check that if we prolongf (x) = √dnx + cnx
or f (x) = ε(x)√dnx − cnx outside the interval [−2K, 2K] anti-periodically, i.e. requiring
that

f (x + 4K) = −f (x) (5.27)

thenf becomes aC∞ function. (Indeed, in a neighbourhood of±2K the prolongations of√
dnx + cnx and ε(x)

√
dnx − cnx are equal, respectively, to±k′ snx/

√
dnx − cnx and

±√dnx − cnx, the latter functions being obviouslyC∞ at±2K.) It follows that, if we define
φ1
i (x) andφ2

i (x) outside [−2K, 2K] by the prescription (5.27), thenφ1
i andφ2

i areC∞ on the
whole real line, and have (real) period 8K. Furthermore, from equations (5.25) and (5.26) it
follows thatφ1

i (x) andφ2
i (x) are, respectively, even and odd functions of the variablex. It is

also clear from the well known equalities

sn(x + 2K) = − snx cn(x + 2K) = − cnx dn(x + 2K) = dnx

thatφ1
i andφ2

i are related by

φ2
i (x) = φ1

i (x + 2K). (5.28)

From this equality and the anti-periodicity condition (5.27) it follows that[
φ1
i (x + 2K)± i φ2

i (x + 2K)
] = ∓i

[
φ1
i (x)± i φ2

i (x)
]

(5.29)

so that the quasi-momentum associated with each of the 2` + 1 algebraic energiesEi is equal
to π/(4K).

Whenn is odd, it is convenient to rewrite equation (5.25) in the following way:

φ1
i (x) =

√
dnx + cnx dnn x

cdx

1
2 (n−1)∑
j=0

σij T̃n−2j−1(cdx)

+(cdx − 1)

1
2 (n−1)∑
j=0

ρij Un−2j−1(cdx)


=
√

dnx + cnx dnn−1 x

cnx

1
2 (n−1)∑
j=0

σij T̃n−2j−1(cdx)

+(cnx − dnx)

1
2 (n−1)∑
j=0

ρij Un−2j−1(cdx)

. (5.30)



A new algebraization of the Laḿe equation 1539

Taking into account the parity properties of the Chebyshev polynomials, and the fact that cn2 x

and dn2 x can be expressed linearly in terms of sn2 x, it follows that

φ1
i (x) =

√
dnx + cnx

[
cnx αi(sn2 x) + dnx βi(sn2 x)

]
(5.31)

whereαi(t) andβi(t) are polynomials int of degree1
2(n− 1) given by

αi(sn2 x) = dnn−1 x

1
2 (n−1)∑
j=0

{
σij T̃n−2j−1(cdx) + ρij Un−2j−1(cdx)

}
(5.32)

βi(sn2 x) = −dnn−1 x

1
2 (n−1)∑
j=0

ρij Un−2j−1(cdx). (5.33)

Comparing (5.31) with [2] (p 97), we see thatφ1
i is proportional to the non-meromorphic Lamé

function Ecri+1/2
` ,

φ1
i (x) ∝ Ecri+1/2

` 06 i 6 n ≡ `− 1
2 (5.34)

where ri is the number of zeros ofφ1
i in the interval(0, 2K). From equation (5.26) or,

alternatively, from equations (5.28) and (5.31), we also obtain

φ2
i (x) = ε(x)

√
dnx − cnx

[
cnxαi(sn2 x)− dnx βi(sn2 x)

]
(5.35)

so that

φ2
i (x) ∝ Esri+1/2

` 06 i 6 n ≡ `− 1
2 . (5.36)

Similarly, whenn is even we rewrite equation (5.25) as follows:

φ1
i (x) =

√
dnx + cnx dnn x

[
pi,n/2 +

n/2−1∑
j=0

σij Tn−2j (cdx)

+ cdx (cdx − 1)
n/2−1∑
j=0

ρij Ũn−2j−2(cdx)

]

=
√

dnx + cnx dnn−2 x

[
dn2 x

(
pi,n/2 +

n/2−1∑
j=0

σij Tn−2j (cdx)

)

+ cnx(cnx − dnx)
n/2−1∑
j=0

ρij Ũn−2j−2(cdx)

]
. (5.37)

We thus obtain

φ1
i (x) =

√
dnx + cnx

[
αi(sn2 x) + cnx dnx βi(sn2 x)

]
(5.38)

whereαi(t) andβi(t) are polynomials int of respective degreesn/2 andn/2− 1, defined by

αi(sn2 x) = dnn x

[
pi,n/2 +

n/2−1∑
j=0

σij Tn−2j (cdx)

]
+ dnn−2 x cn2 x

n/2−1∑
j=0

ρij Ũn−2j−2(cdx)

(5.39)

βi(sn2 x) = −dnn−2 x

1
2 (n−1)∑
j=0

ρij Ũn−2j−2(cdx). (5.40)
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From (5.28) we have

φ2
i (x) = ε(x)

√
dnx − cnx

[
αi(sn2 x)− cnx dnx βi(sn2 x)

]
. (5.41)

Comparing, again, with [2] we deduce that equations (5.34) and (5.36) also hold whenn is an
even non-negative integer.

5.1. Examples

The casen = 0, i.e. ` = 1
2, is particularly easy to deal with in the framework of our

formalism. Indeed, in this case we can exactly compute one eigenvalueE0 of the Laḿe
Hamiltonian, its corresponding two linearly independent eigenfunctions given by (5.38)–(5.41)
with n = 0:

φ1
0(x) =

√
dnx + cnx φ2

0(x) = ε(x)
√

dnx − cnx. (5.42)

The eigenvalueE0 is the root of the first-degree polynomialP1 or, equivalently, ofP̂1 (since
both polynomials differ by a constant factor, by (5.13)). From equation (3.8) withj = 0 we
obtain

P̂1(E) = (E − b0) P̂0 = E − b0

and from (5.15) (withn = 0) it follows that

E0 = b0 = 1
4(1 +m) ≡ 1

4(1 + k2). (5.43)

We have thus shown in a purely algebraic fashion that the general solution of the Lamé
equation

ψ ′′(x) + 1
4

(
1 + k2 − 3k2 sn2 x

)
ψ(x) = 0

is a linear combination of the two functions (5.42).
Similarly, for n = 1, i.e.` = 3

2, the two algebraic eigenvalues of the Lamé Hamiltonian
are the roots of the polynomial

P̂2(E) = E2 − 5
2(m + 1)E + 3

16(3m
2 + 23m + 3) (5.44)

namely,

E0

E1

}
= 5

4(m + 1)∓
√
m2 −m + 1. (5.45)

Their associated eigenfunctions are easily computed using equations (5.31)–(5.33), which for
n = 1 reduce to

αi = 2pi0 = 2

βi = pi1− pi0 = −P1(Ei)− 1= − 2

m
P̂1(Ei)− 1= 2

m

[
3
4(m + 3)− Ei

]− 1.

From equation (5.31) we obtain

φ1
0

φ1
1

}
=
√

dnx + cnx
[
m cnx +

(
1−m±

√
m2 −m + 1

)
dnx

]
(5.46)
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where we have omitted a trivial constant factor. The remaining two eigenfunctionsφ2
0 andφ2

1
can be easily obtained from (5.46) using (5.35):

φ2
0

φ2
1

}
= ε(x)√dnx − cnx

[
m cnx −

(
1−m±

√
m2 −m + 1

)
dnx

]
. (5.47)

The latter formulae are easily seen to coincide with those at the end of [2].
As in the case of integer̀, the computation of the non-meromorphic Lamé functions

in closed form quickly becomes unmanageable as the degree of the critical polynomialP̂n+1

increases. For example, for` = 5
2 (i.e.n = 2) the algebraic eigenfunctions of the form (5.37)

can be expressed as follows:

φ1
i

24m2
=
√

dnx + cnx
{−25− 130m + 87m2 + (104 + 40m)Ei − 16E2

i

+m sn2 x
[
25 + 34m + 9m2 − (104 + 40m)Ei + 16E2

i

]
+ 2 cnx dnx

[
25 + 430m + 21m2 − 8(13 + 11m)Ei + 16E2

i

]}
(5.48)

whereEi is one of the three real roots of the critical polynomial

P̂3(E) = E3− 35
4 (m + 1)E2 + 7

16

(
37m2 + 138m + 37

)
E − 5

64(m + 1)
(
45m2 + 794m + 45

)
.

(5.49)

The remaining three eigenfunctionsφ2
i (i = 0, 1, 2) are obtained from equation (5.48) using

equation (5.41). Whenm = 1
2, the energiesEi can again be computed explicitly, i.e.

E0

E2

}
= 35

8 ∓
√

7 E1 = 35
8 . (5.50)

Consequently, equation (5.48) for the eigenfunctions yields the following explicit expressions:

− 3
4 φ

1
0

− 3
4 φ

1
2

}
=
√

dnx + cnx
[
(5±
√

7) sn2 x − 2(2±
√

7) cnx dnx − 7∓ 2
√

7
]

(5.51)

− 1
16φ

1
1 =
√

dnx + cnx
(
sn2 x + 2 cnx dnx − 7

4

)
. (5.52)
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